These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 8986757)
1. Chaperone activity and structure of monomeric polypeptide binding domains of GroEL. Zahn R; Buckle AM; Perrett S; Johnson CM; Corrales FJ; Golbik R; Fersht AR Proc Natl Acad Sci U S A; 1996 Dec; 93(26):15024-9. PubMed ID: 8986757 [TBL] [Abstract][Full Text] [Related]
2. NMR analysis of the binding of a rhodanese peptide to a minichaperone in solution. Kobayashi N; Freund SM; Chatellier J; Zahn R; Fersht AR J Mol Biol; 1999 Sep; 292(1):181-90. PubMed ID: 10493867 [TBL] [Abstract][Full Text] [Related]
3. Destabilization of the complete protein secondary structure on binding to the chaperone GroEL. Zahn R; Spitzfaden C; Ottiger M; Wüthrich K; Plückthun A Nature; 1994 Mar; 368(6468):261-5. PubMed ID: 7908413 [TBL] [Abstract][Full Text] [Related]
4. Multiple cycles of global unfolding of GroEL-bound cyclophilin A evidenced by NMR. Nieba-Axmann SE; Ottiger M; Wüthrich K; Plückthun A J Mol Biol; 1997 Sep; 271(5):803-18. PubMed ID: 9299328 [TBL] [Abstract][Full Text] [Related]
5. A monomeric variant of GroEL binds nucleotides but is inactive as a molecular chaperone. White ZW; Fisher KE; Eisenstein E J Biol Chem; 1995 Sep; 270(35):20404-9. PubMed ID: 7657615 [TBL] [Abstract][Full Text] [Related]
6. Productive folding of a tethered protein in the chaperonin GroEL-GroES cage. Motojima F; Yoshida M Biochem Biophys Res Commun; 2015 Oct; 466(1):72-5. PubMed ID: 26325470 [TBL] [Abstract][Full Text] [Related]
7. In vivo activities of GroEL minichaperones. Chatellier J; Hill F; Lund PA; Fersht AR Proc Natl Acad Sci U S A; 1998 Aug; 95(17):9861-6. PubMed ID: 9707566 [TBL] [Abstract][Full Text] [Related]
8. Hydrophilic residues at the apical domain of GroEL contribute to GroES binding but attenuate polypeptide binding. Motojima F; Makio T; Aoki K; Makino Y; Kuwajima K; Yoshida M Biochem Biophys Res Commun; 2000 Jan; 267(3):842-9. PubMed ID: 10673379 [TBL] [Abstract][Full Text] [Related]
9. From minichaperone to GroEL 2: importance of avidity of the multisite ring structure. Chatellier J; Hill F; Fersht AR J Mol Biol; 2000 Dec; 304(5):883-96. PubMed ID: 11124034 [TBL] [Abstract][Full Text] [Related]
10. Purification and characterization of Chromatium vinosum GroEL and GroES proteins overexpressed in Escherichia coli cells lacking the endogenous groESL operon. Dionisi HM; Viale AM Protein Expr Purif; 1998 Nov; 14(2):275-82. PubMed ID: 9790891 [TBL] [Abstract][Full Text] [Related]
11. Refolding of bovine mitochondrial rhodanese by chaperonins GroEL and GroES. Weber F; Hayer-Hartl M Methods Mol Biol; 2000; 140():117-26. PubMed ID: 11484478 [No Abstract] [Full Text] [Related]
12. Truncated GroEL monomer has the ability to promote folding of rhodanese without GroES and ATP. Makino Y; Taguchi H; Yoshida M FEBS Lett; 1993 Dec; 336(2):363-7. PubMed ID: 7903258 [TBL] [Abstract][Full Text] [Related]
13. The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex. Xu Z; Horwich AL; Sigler PB Nature; 1997 Aug; 388(6644):741-50. PubMed ID: 9285585 [TBL] [Abstract][Full Text] [Related]
14. The unfolding action of GroEL on a protein substrate. van der Vaart A; Ma J; Karplus M Biophys J; 2004 Jul; 87(1):562-73. PubMed ID: 15240489 [TBL] [Abstract][Full Text] [Related]
16. From minichaperone to GroEL 1: information on GroEL-polypeptide interactions from crystal packing of minichaperones. Wang Q; Buckle AM; Fersht AR J Mol Biol; 2000 Dec; 304(5):873-81. PubMed ID: 11124033 [TBL] [Abstract][Full Text] [Related]
17. Modular structure of the trigger factor required for high activity in protein folding. Zarnt T; Tradler T; Stoller G; Scholz C; Schmid FX; Fischer G J Mol Biol; 1997 Sep; 271(5):827-37. PubMed ID: 9299330 [TBL] [Abstract][Full Text] [Related]
18. From minichaperone to GroEL 3: properties of an active single-ring mutant of GroEL. Chatellier J; Hill F; Foster NW; Goloubinoff P; Fersht AR J Mol Biol; 2000 Dec; 304(5):897-910. PubMed ID: 11124035 [TBL] [Abstract][Full Text] [Related]
19. Allostery wiring diagrams in the transitions that drive the GroEL reaction cycle. Tehver R; Chen J; Thirumalai D J Mol Biol; 2009 Mar; 387(2):390-406. PubMed ID: 19121324 [TBL] [Abstract][Full Text] [Related]
20. Coupling between allosteric transitions in GroEL and assisted folding of a substrate protein. Stan G; Lorimer GH; Thirumalai D; Brooks BR Proc Natl Acad Sci U S A; 2007 May; 104(21):8803-8. PubMed ID: 17496143 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]