These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 8986800)

  • 1. Integration of Agrobacterium tumefaciens T-DNA in the Saccharomyces cerevisiae genome by illegitimate recombination.
    Bundock P; Hooykaas PJ
    Proc Natl Acad Sci U S A; 1996 Dec; 93(26):15272-5. PubMed ID: 8986800
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integration of an insertion-type transferred DNA vector from Agrobacterium tumefaciens into the Saccharomyces cerevisiae genome by gap repair.
    Risseeuw E; Franke-van Dijk ME; Hooykaas PJ
    Mol Cell Biol; 1996 Oct; 16(10):5924-32. PubMed ID: 8816506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trans-kingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae.
    Bundock P; den Dulk-Ras A; Beijersbergen A; Hooykaas PJ
    EMBO J; 1995 Jul; 14(13):3206-14. PubMed ID: 7621833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic requirements for the targeted integration of Agrobacterium T-DNA in Saccharomyces cerevisiae.
    van Attikum H; Hooykaas PJ
    Nucleic Acids Res; 2003 Feb; 31(3):826-32. PubMed ID: 12560477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. T-DNA from Agrobacterium tumefaciens as an efficient tool for gene targeting in Kluyveromyces lactis.
    Bundock P; Mróczek K; Winkler AA; Steensma HY; Hooykaas PJ
    Mol Gen Genet; 1999 Feb; 261(1):115-21. PubMed ID: 10071217
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integration of complete transferred DNA units is dependent on the activity of virulence E2 protein of Agrobacterium tumefaciens.
    Rossi L; Hohn B; Tinland B
    Proc Natl Acad Sci U S A; 1996 Jan; 93(1):126-30. PubMed ID: 8552588
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transgene integration and organization in cotton (Gossypium hirsutum L.) genome.
    Zhang J; Cai L; Cheng J; Mao H; Fan X; Meng Z; Chan KM; Zhang H; Qi J; Ji L; Hong Y
    Transgenic Res; 2008 Apr; 17(2):293-306. PubMed ID: 17549600
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Agrobacterium tumefaciens-mediated transformation of yeast.
    Piers KL; Heath JD; Liang X; Stephens KM; Nester EW
    Proc Natl Acad Sci U S A; 1996 Feb; 93(4):1613-8. PubMed ID: 8643679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-homologous end-joining proteins are required for Agrobacterium T-DNA integration.
    van Attikum H; Bundock P; Hooykaas PJ
    EMBO J; 2001 Nov; 20(22):6550-8. PubMed ID: 11707425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deviating T-DNA transfer from Agrobacterium tumefaciens to plants.
    van der Graaff E; den Dulk-Ras A; Hooykaas PJ
    Plant Mol Biol; 1996 Jun; 31(3):677-81. PubMed ID: 8790299
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Site-specific cleavage and joining of single-stranded DNA by VirD2 protein of Agrobacterium tumefaciens Ti plasmids: analogy to bacterial conjugation.
    Pansegrau W; Schoumacher F; Hohn B; Lanka E
    Proc Natl Acad Sci U S A; 1993 Dec; 90(24):11538-42. PubMed ID: 8265585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Involvement of Rad52 in T-DNA circle formation during Agrobacterium tumefaciens-mediated transformation of Saccharomyces cerevisiae.
    Rolloos M; Dohmen MH; Hooykaas PJ; van der Zaal BJ
    Mol Microbiol; 2014 Mar; 91(6):1240-51. PubMed ID: 24460832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Agrobacterium-Mediated Transformation of Yeast and Fungi.
    Hooykaas PJJ; van Heusden GPH; Niu X; Reza Roushan M; Soltani J; Zhang X; van der Zaal BJ
    Curr Top Microbiol Immunol; 2018; 418():349-374. PubMed ID: 29770864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic analysis of the virD operon of Agrobacterium tumefaciens: a search for functions involved in transport of T-DNA into the plant cell nucleus and in T-DNA integration.
    Koukolíková-Nicola Z; Raineri D; Stephens K; Ramos C; Tinland B; Nester EW; Hohn B
    J Bacteriol; 1993 Feb; 175(3):723-31. PubMed ID: 8380800
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The DNA sequences of T-DNA junctions suggest that complex T-DNA loci are formed by a recombination process resembling T-DNA integration.
    De Buck S; Jacobs A; Van Montagu M; Depicker A
    Plant J; 1999 Nov; 20(3):295-304. PubMed ID: 10571890
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Illegitimate integration of single-stranded DNA in Saccharomyces cerevisiae.
    Gjuracić K; Zgaga Z
    Mol Gen Genet; 1996 Nov; 253(1-2):173-81. PubMed ID: 9003301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Illegitimate recombination in plants: a model for T-DNA integration.
    Gheysen G; Villarroel R; Van Montagu M
    Genes Dev; 1991 Feb; 5(2):287-97. PubMed ID: 1995418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Blocking single-stranded transferred DNA conversion to double-stranded intermediates by overexpression of yeast DNA REPLICATION FACTOR A.
    Dafny-Yelin M; Levy A; Dafny R; Tzfira T
    Plant Physiol; 2015 Jan; 167(1):153-63. PubMed ID: 25424309
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA rearrangement associated with the integration of T-DNA in tobacco: an example for multiple duplications of DNA around the integration target.
    Ohba T; Yoshioka Y; Machida C; Machida Y
    Plant J; 1995 Jan; 7(1):157-64. PubMed ID: 7894506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Agrobacterium T-strand production in vitro: sequence-specific cleavage and 5' protection of single-stranded DNA templates by purified VirD2 protein.
    Jasper F; Koncz C; Schell J; Steinbiss HH
    Proc Natl Acad Sci U S A; 1994 Jan; 91(2):694-8. PubMed ID: 8290583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.