These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 8987172)

  • 1. A history of studies of visual accommodation in birds.
    Glasser A; Howland HC
    Q Rev Biol; 1996 Dec; 71(4):475-509. PubMed ID: 8987172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bringing accommodation into focus: the several discoveries of the ciliary muscle.
    Harper DG
    JAMA Ophthalmol; 2014 May; 132(5):645-8. PubMed ID: 24504191
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The mechanism of lenticular accommodation in chicks.
    Glasser A; Murphy CJ; Troilo D; Howland HC
    Vision Res; 1995 Jun; 35(11):1525-40. PubMed ID: 7667911
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Refractive state, ocular anatomy, and accommodative range of the sea otter (Enhydra lutris).
    Murphy CJ; Bellhorn RW; Williams T; Burns MS; Schaeffel F; Howland HC
    Vision Res; 1990; 30(1):23-32. PubMed ID: 2321364
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ocular accommodation in chickens: corneal vs lenticular accommodation and effect of age.
    Sivak JG; Hildebrand TE; Lebert CG; Myshak LM; Ryall LA
    Vision Res; 1986; 26(11):1865-72. PubMed ID: 3617529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visual accommodation in vertebrates: mechanisms, physiological response and stimuli.
    Ott M
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2006 Feb; 192(2):97-111. PubMed ID: 16172892
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The mechanism of corneal accommodation in chicks.
    Glasser A; Troilo D; Howland HC
    Vision Res; 1994 Jun; 34(12):1549-66. PubMed ID: 7941363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Observation of physiological change in the human ciliary body using an ultrasound biomicroscope during accommodation].
    Kano K; Kuwayama Y; Mizoue S; Hashitani T; Sasamoto Y; Horimoto K; Okamoto H
    Nippon Ganka Gakkai Zasshi; 1999 Apr; 103(4):297-300. PubMed ID: 10339974
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The functional anatomy of the ciliary muscle in four avian species.
    Pardue MT; Sivak JG
    Brain Behav Evol; 1997; 49(6):295-311. PubMed ID: 9167856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The anatomy of the ciliary region of the chicken eye.
    Murphy CJ; Glasser A; Howland HC
    Invest Ophthalmol Vis Sci; 1995 Apr; 36(5):889-96. PubMed ID: 7706037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The quest for the human ocular accommodation mechanism.
    de Jong PTVM
    Acta Ophthalmol; 2020 Feb; 98(1):98-104. PubMed ID: 31347276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Corneal power and underwater accommodation in great cormorants (Phalacrocorax carbo sinensis).
    Katzir G; Howland HC
    J Exp Biol; 2003 Mar; 206(Pt 5):833-41. PubMed ID: 12547938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lenticular accommodation in relation to ametropia: the chick model.
    Choh V; Sivak JG
    J Vis; 2005 Mar; 5(3):165-76. PubMed ID: 15929643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accommodating intraocular lenses: a critical review of present and future concepts.
    Menapace R; Findl O; Kriechbaum K; Leydolt-Koeppl Ch
    Graefes Arch Clin Exp Ophthalmol; 2007 Apr; 245(4):473-89. PubMed ID: 16944188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Edinger-Westphal and pharmacologically stimulated accommodative refractive changes and lens and ciliary process movements in rhesus monkeys.
    Ostrin LA; Glasser A
    Exp Eye Res; 2007 Feb; 84(2):302-13. PubMed ID: 17137577
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accommodative ciliary body and lens function in rhesus monkeys, I: normal lens, zonule and ciliary process configuration in the iridectomized eye.
    Croft MA; Glasser A; Heatley G; McDonald J; Ebbert T; Dahl DB; Nadkarni NV; Kaufman PL
    Invest Ophthalmol Vis Sci; 2006 Mar; 47(3):1076-86. PubMed ID: 16505044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnitude and rate of accommodation in diving and nondiving birds.
    Sivak JG; Hildebrand T; Lebert C
    Vision Res; 1985; 25(7):925-33. PubMed ID: 4049742
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Barn owls have symmetrical accommodation in both eyes, but independent pupillary responses to light.
    Schaeffel F; Wagner H
    Vision Res; 1992 Jun; 32(6):1149-55. PubMed ID: 1509706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-invasive measurements of the dynamic changes in the ciliary muscle, crystalline lens morphology, and anterior chamber during accommodation with a high-resolution OCT.
    Esteve-Taboada JJ; Domínguez-Vicent A; Monsálvez-Romín D; Del Águila-Carrasco AJ; Montés-Micó R
    Graefes Arch Clin Exp Ophthalmol; 2017 Jul; 255(7):1385-1394. PubMed ID: 28424868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accommodation: mechanism and measurement.
    Glasser A
    Ophthalmol Clin North Am; 2006 Mar; 19(1):1-12, v. PubMed ID: 16500524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.