These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 8987480)

  • 1. Bioreactor strategies for the treatment of growth-inhibitory waste: an analysis of thiodiglycol degradation, the main hydrolysis product of sulfur mustard.
    Lee T; Pham MQ; Weigand WA; Harvey SP; Bentley WE
    Biotechnol Prog; 1996; 12(4):533-9. PubMed ID: 8987480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Observations of metabolite formation and variable yield in thiodiglycol biodegradation process : impact on reactor design.
    Lee TS; Weigand WA; Bentley WE
    Appl Biochem Biotechnol; 1997; 63-65():743-57. PubMed ID: 18576129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transformation of thiodiglycol by resting cells of Alcaligenes xylosoxydans PGH10.
    García-Ruiz V; Martín-Otero LE; Puyet A
    Biotechnol Prog; 2002; 18(2):252-6. PubMed ID: 11934292
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biocatalytic transformation of [(2-Hydroxyethyl)thio]acetic acid and thiodiglycolic acid from thiodiglycol by Alcaligenes xylosoxydans ssp. xylosoxydans (SH91).
    Lee T; Chan SH; Weigand WA; Bentley WE
    Biotechnol Prog; 2000; 16(3):363-7. PubMed ID: 10835236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reactor comparisons for the biodegradation of thiodiglycol, a product of mustard gas hydrolysis.
    Pham MQ; Harvey SP; Weigand WA; Bentley WE
    Appl Biochem Biotechnol; 1996; 57-58():779-89. PubMed ID: 8669917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [The bioutilization of thiodiglycol (a breakdown product of mustard gas): isolation of degraders and investigation of degradation conditions].
    Tikhonova EB; Ermakova IT; Slepen'kin AV; Kashparov KI; Starovoĭtov II; Boronin AM
    Mikrobiologiia; 2002; 71(2):247-53. PubMed ID: 12024827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New insights into the biodegradation of thiodiglycol, the hydrolysis product of Yperite (sulfur mustard gas).
    Dell'Amico E; Bernasconi S; Cavalca L; Magni C; Prinsi B; Andreoni V
    J Appl Microbiol; 2009 Apr; 106(4):1111-21. PubMed ID: 19191966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Thiodiglycol metabolism in Alcaligenes xylosoxydans subsp. denitrificans].
    Ermakova IT; Starovoĭtov II; Tikhonova EB; Slepen'kin AV; Kashparov KI; Boronin AM
    Mikrobiologiia; 2002; 71(5):604-10. PubMed ID: 12449625
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodegradation of thiodiglycol, a hydrolyzate of the chemical weapon Yperite, by benzothiophene-desulfurizing bacteria.
    El Bassi L; Shinzato N; Namihira T; Oku H; Matsui T
    J Hazard Mater; 2009 Aug; 167(1-3):124-7. PubMed ID: 19179003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Soil biotransformation of thiodiglycol, the hydrolysis product of mustard gas: understanding the factors governing remediation of mustard gas contaminated soil.
    Li H; Muir R; McFarlane NR; Soilleux RJ; Yu X; Thompson IP; Jackman SA
    Biodegradation; 2013 Feb; 24(1):125-35. PubMed ID: 22752796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thiodiglycol, the hydrolysis product of sulfur mustard: analysis of in vitro biotransformation by mammalian alcohol dehydrogenases using nuclear magnetic resonance.
    Brimfield AA; Novak MJ; Hodgson E
    Toxicol Appl Pharmacol; 2006 Jun; 213(3):207-15. PubMed ID: 16417912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a novel process for the biological conversion of H2S and methanethiol to elemental sulfur.
    Sipma J; Janssen AJ; Pol LW; Lettinga G
    Biotechnol Bioeng; 2003 Apr; 82(1):1-11. PubMed ID: 12569619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Soil bacterium Pseudomonas sp.: destroyer of mustard gas hydrolysis products.
    Medvedeva N; Polyak Y; Zaytseva T; Zinovieva S
    Biotechnol J; 2007 Aug; 2(8):1033-9. PubMed ID: 17526053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of a large-scale surface-aerated bioreactor for biomass production using a VOC substrate.
    Acai P; Polakovic M
    J Biotechnol; 2007 Oct; 132(2):149-55. PubMed ID: 17548122
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High rate treatment of terephthalic acid production wastewater in a two-stage anaerobic bioreactor.
    Kleerebezem R; Beckers J; Hulshoff Pol LW; Lettinga G
    Biotechnol Bioeng; 2005 Jul; 91(2):169-79. PubMed ID: 15889396
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of operating parameters on molinate biodegradation.
    Correia P; Boaventura RA; Reis MA; Nunes OC
    Water Res; 2006 Jan; 40(2):331-40. PubMed ID: 16380149
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetics of the degradation of sulfur mustard on ambient and moist concrete.
    Brevett CA; Sumpter KB; Nickol RG
    J Hazard Mater; 2009 Feb; 162(1):281-91. PubMed ID: 18584953
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance comparison of a continuous-flow stirred-tank reactor and an anaerobic sequencing batch reactor for fermentative hydrogen production depending on substrate concentration.
    Kim SH; Han SK; Shin HS
    Water Sci Technol; 2005; 52(10-11):23-9. PubMed ID: 16459773
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reactor design for minimizing product inhibition during enzymatic lignocellulose hydrolysis: II. Quantification of inhibition and suitability of membrane reactors.
    Andrić P; Meyer AS; Jensen PA; Dam-Johansen K
    Biotechnol Adv; 2010; 28(3):407-25. PubMed ID: 20172020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.