These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 8987496)

  • 21. Enhanced ethanol fermentation of brewery wastewater using the genetically modified strain E. coli KO11.
    Rao K; Chaudhari V; Varanasi S; Kim DS
    Appl Microbiol Biotechnol; 2007 Feb; 74(1):50-60. PubMed ID: 17043818
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of co-products of enzyme-assisted aqueous extraction of soybeans on ethanol production in dry-grind corn fermentation.
    Sekhon JK; Jung S; Wang T; Rosentrater KA; Johnson LA
    Bioresour Technol; 2015 Sep; 192():451-60. PubMed ID: 26080102
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fermentation of biomass-derived glucuronic acid by pet expressing recombinants of E. coli B.
    Lawford HG; Rousseau JD
    Appl Biochem Biotechnol; 1997; 63-65():221-41. PubMed ID: 9170247
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A novel strategy for production of ethanol and recovery of xylose from simulated corncob hydrolysate.
    Sun J; Wang J; Tian K; Dong Z; Liu X; Permaul K; Singh S; Prior BA; Wang Z
    Biotechnol Lett; 2018 May; 40(5):781-788. PubMed ID: 29564679
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Disruption of ptsG gene and manXYZ operon of ethanol-producing Escherichia coli KO11: Effects on glucose and xylose utilization and ethanol production.
    Ohta K; Hamasuna H; Tsukamoto J; Wakiyama M; Izumi Y; Harada K
    J Biosci Bioeng; 2012 May; 113(5):608-10. PubMed ID: 22284966
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of acetate on the growth and fermentation performance of Escherichia coli KO11.
    Takahashi CM; Takahashi DF; Carvalhal ML; Alterthum F
    Appl Biochem Biotechnol; 1999 Sep; 81(3):193-203. PubMed ID: 10652785
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Whole Conversion of Soybean Molasses into Isomaltulose and Ethanol by Combining Enzymatic Hydrolysis and Successive Selective Fermentations.
    Wang ZP; Zhang LL; Liu S; Liu XY; Yu XJ
    Biomolecules; 2019 Aug; 9(8):. PubMed ID: 31404957
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Application of microalgae hydrolysate as a fermentation medium for microbial production of 2-pyrone 4,6-dicarboxylic acid.
    Htet AN; Noguchi M; Ninomiya K; Tsuge Y; Kuroda K; Kajita S; Masai E; Katayama Y; Shikinaka K; Otsuka Y; Nakamura M; Honda R; Takahashi K
    J Biosci Bioeng; 2018 Jun; 125(6):717-722. PubMed ID: 29395960
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Efficient fermentation of Pinus sp. acid hydrolysates by an ethanologenic strain of Escherichia coli.
    Barbosa MF; Beck MJ; Fein JE; Potts D; Ingram LO
    Appl Environ Microbiol; 1992 Apr; 58(4):1382-4. PubMed ID: 1599258
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mathematical modeling of the fermentation of acid-hydrolyzed pyrolytic sugars to ethanol by the engineered strain Escherichia coli ACCC 11177.
    Chang D; Yu Z; Islam ZU; Zhang H
    Appl Microbiol Biotechnol; 2015 May; 99(9):4093-105. PubMed ID: 25750044
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Continuous ethanol production from wheat straw hydrolysate by recombinant ethanologenic Escherichia coli strain FBR5.
    Saha BC; Cotta MA
    Appl Microbiol Biotechnol; 2011 Apr; 90(2):477-87. PubMed ID: 21234754
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ethanol production from non-pretreated napiergrass through a simultaneous saccharification and fermentation process followed by a pentose fermentation with Escherichia coli KO11.
    Yasuda M; Miura A; Shiragami T; Matsumoto J; Kamei I; Ishii Y; Ohta K
    J Biosci Bioeng; 2012 Aug; 114(2):188-92. PubMed ID: 22595344
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quantitatively understanding reduced xylose fermentation performance in AFEX™ treated corn stover hydrolysate using Saccharomyces cerevisiae 424A (LNH-ST) and Escherichia coli KO11.
    Jin M; Balan V; Gunawan C; Dale BE
    Bioresour Technol; 2012 May; 111():294-300. PubMed ID: 22366603
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Production of DagA and ethanol by sequential utilization of sugars in a mixed-sugar medium simulating microalgal hydrolysate.
    Park J; Hong SK; Chang YK
    Bioresour Technol; 2015 Sep; 191():414-9. PubMed ID: 25777065
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of separate hydrolysis and fermentation and simultaneous saccharification and fermentation processes for ethanol production from wheat straw by recombinant Escherichia coli strain FBR5.
    Saha BC; Nichols NN; Qureshi N; Cotta MA
    Appl Microbiol Biotechnol; 2011 Nov; 92(4):865-74. PubMed ID: 21968655
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of minimal fermentation media supplementation for ethanol production using two Saccharomyces cerevisiae strains.
    Tropea A; Wilson D; Cicero N; Potortì AG; La Torre GL; Dugo G; Richardson D; Waldron KW
    Nat Prod Res; 2016; 30(9):1009-16. PubMed ID: 26469871
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ethanol production from dilute-Acid softwood hydrolysate by co-culture.
    Qian M; Tian S; Li X; Zhang J; Pan Y; Yang X
    Appl Biochem Biotechnol; 2006 Sep; 134(3):273-84. PubMed ID: 16960285
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Soybean bio-refinery platform: enzymatic process for production of soy protein concentrate, soy protein isolate and fermentable sugar syrup.
    Loman AA; Islam SM; Li Q; Ju LK
    Bioprocess Biosyst Eng; 2016 Oct; 39(10):1501-14. PubMed ID: 27207010
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tetanus toxin production in soy-based medium: nutritional studies and scale-up into small fermentors.
    Demain AL; George S; Kole M; Gerson DF; Fang A
    Lett Appl Microbiol; 2007 Dec; 45(6):635-8. PubMed ID: 17908228
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sucrose and overexpression of trehalose biosynthetic genes (otsBA) increase desiccation tolerance of recombinant Escherichia coli.
    Miller EN; Ingram LO
    Biotechnol Lett; 2008 Mar; 30(3):503-8. PubMed ID: 17973087
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.