BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 8987566)

  • 1. Effects of the space environment on Drosophila melanogaster development. Implications of the IML-2 experiment.
    Marco R; Benguría A; Sánchez J; de Juan E
    J Biotechnol; 1996 Jun; 47(2-3):179-89. PubMed ID: 8987566
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microgravity effects on the oogenesis and development of embryos of Drosophila melanogaster laid in the Spaceshuttle during the Biorack experiment (ESA).
    Vernós I; González-Jurado J; Calleja M; Marco R
    Int J Dev Biol; 1989 Jun; 33(2):213-26. PubMed ID: 2518159
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microgravity effects on Drosophila melanogaster behavior and aging. Implications of the IML-2 experiment.
    Benguría A; Grande E; de Juan E; Ugalde C; Miquel J; Garesse R; Marco R
    J Biotechnol; 1996 Jun; 47(2-3):191-201. PubMed ID: 8987567
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microgravity effects on Drosophila melanogaster development and aging: comparative analysis of the results of the Fly experiment in the Biokosmos 9 biosatellite flight.
    Marco R; González-Jurado J; Calleja M; Garesse R; Maroto M; Ramírez E; Holgado MC; de Juan E; Miquel J
    Adv Space Res; 1992; 12(1):157-66. PubMed ID: 11536953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Drosophila melanogaster as a model system for assessing development under conditions of microgravity.
    Abbott MK; Hilgenfeld RB; Denell RE
    Trans Kans Acad Sci; 1992; 95(1-2):70-5. PubMed ID: 11537986
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of gravity-sensing organs in altered gravity.
    Wiederhold ML; Gao WY; Harrison JL; Hejl R
    Gravit Space Biol Bull; 1997 Jun; 10(2):91-6. PubMed ID: 11540125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biosatellite II--physiological and somatic effects on insects.
    Buckhold B
    Life Sci Space Res; 1969; 7():77-83. PubMed ID: 11949690
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA repair in microgravity: studies on bacteria and mammalian cells in the experiments REPAIR and KINETICS.
    Horneck G; Rettberg P; Baumstark-Khan C; Rink H; Kozubek S; Schäfer M; Schmitz C
    J Biotechnol; 1996 Jun; 47(2-3):99-112. PubMed ID: 8987564
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of microgravity on the character of progeny of Drosophila melanogaster.
    Li XG; Wang GZ
    Microgravity Sci Technol; 1992 Jul; 5(2):94-7. PubMed ID: 11541480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insect gravitational biology: ground-based and shuttle flight experiments using the beetle Tribolium castaneum.
    Bennett RL; Abbott MK; Denell RE
    J Exp Zool; 1994 Jul; 269(3):242-52. PubMed ID: 11536636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pleurodeles waltl, amphibian, Urodele, is a suitable biological model for embryological and physiological space experiments on a vertebrate.
    Gualandris-Parisot L; Husson D; Foulquier F; Kan P; Davet J; Aimar C; Dournon C; Duprat AM
    Adv Space Res; 2001; 28(4):569-78. PubMed ID: 11799990
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biological experiments on the orbital station Salyut 4.
    Dubinin NP; Glembotsky YL; Vaulina EN; Merkis AI; Laurinavichius RS; Palmbakh LR; Grozdova TY; Holikova TA; Yaroshyus AV; Mashinsky AL; Izupak EA; Konshin NI
    Life Sci Space Res; 1977; 15():267-72. PubMed ID: 11962500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of microgravity on osteoblast growth.
    Hughes-Fulford M; Tjandrawinata R; Fitzgerald J; Gasuad K; Gilbertson V
    Gravit Space Biol Bull; 1998 May; 11(2):51-60. PubMed ID: 11540639
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insight into mechanisms of reduced orthostatic performance after exposure to microgravity: comparison of ground-based and space flight data.
    Convertino VA
    J Gravit Physiol; 1998 Jul; 5(1):P85-8. PubMed ID: 11542376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activation signals of T lymphocytes in microgravity.
    Pippia P; Sciola L; Cogoli-Greuter M; Meloni MA; Spano A; Cogoli A
    J Biotechnol; 1996 Jun; 47(2-3):215-22. PubMed ID: 8987568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The sea urchin larva, a suitable model for biomineralisation studies in space (IML-2 ESA Biorack experiment '24-F urchin').
    Marthy HJ; Gasset G; Tixador R; Schatt P; Eche B; Dessommes A; Giacomini T; Tap G; Gorand D
    J Biotechnol; 1996 Jun; 47(2-3):167-77. PubMed ID: 11536758
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Drosophila melanogaster, a model system for comparative studies on the responses to real and simulated microgravity.
    Marco R; Laván DA; van Loon JJ; Leandro LJ; Larkin OJ; Dijkstra C; Anthony P; Villa A; Davey MR; Lowe KC; Power JB; Medina FJ
    J Gravit Physiol; 2007 Jul; 14(1):P125-6. PubMed ID: 18372731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brine shrimp development in space: ground-based data to shuttle flight results.
    Spooner BS; DeBell L; Hawkins L; Metcalf J; Guikema JA; Rosowski J
    Trans Kans Acad Sci; 1992; 95(1-2):87-92. PubMed ID: 11537988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Swimming kinematics and respiratory behaviour of Xenopus laevis larvae raised in altered gravity.
    Fejtek M; Souza K; Neff A; Wassersug R
    J Exp Biol; 1998 Jun; 201(Pt 12):1917-26. PubMed ID: 9722430
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of exposure to microgravity on the development and structural organisation of plant protoplasts flown on Biokosmos 9.
    Rasmussen O; Klimchuk DA; Kordyum EL; Danevich LA; Tarnavskaya EB; Lozovaya VV; Tairbekov MG; Baggerud C; Iversen TH
    Physiol Plant; 1992 Jan; 84(1):162-70. PubMed ID: 11541143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.