These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
99 related articles for article (PubMed ID: 8987566)
1. Effects of the space environment on Drosophila melanogaster development. Implications of the IML-2 experiment. Marco R; Benguría A; Sánchez J; de Juan E J Biotechnol; 1996 Jun; 47(2-3):179-89. PubMed ID: 8987566 [TBL] [Abstract][Full Text] [Related]
2. Microgravity effects on the oogenesis and development of embryos of Drosophila melanogaster laid in the Spaceshuttle during the Biorack experiment (ESA). Vernós I; González-Jurado J; Calleja M; Marco R Int J Dev Biol; 1989 Jun; 33(2):213-26. PubMed ID: 2518159 [TBL] [Abstract][Full Text] [Related]
3. Microgravity effects on Drosophila melanogaster behavior and aging. Implications of the IML-2 experiment. Benguría A; Grande E; de Juan E; Ugalde C; Miquel J; Garesse R; Marco R J Biotechnol; 1996 Jun; 47(2-3):191-201. PubMed ID: 8987567 [TBL] [Abstract][Full Text] [Related]
4. Microgravity effects on Drosophila melanogaster development and aging: comparative analysis of the results of the Fly experiment in the Biokosmos 9 biosatellite flight. Marco R; González-Jurado J; Calleja M; Garesse R; Maroto M; Ramírez E; Holgado MC; de Juan E; Miquel J Adv Space Res; 1992; 12(1):157-66. PubMed ID: 11536953 [TBL] [Abstract][Full Text] [Related]
5. Drosophila melanogaster as a model system for assessing development under conditions of microgravity. Abbott MK; Hilgenfeld RB; Denell RE Trans Kans Acad Sci; 1992; 95(1-2):70-5. PubMed ID: 11537986 [TBL] [Abstract][Full Text] [Related]
6. Development of gravity-sensing organs in altered gravity. Wiederhold ML; Gao WY; Harrison JL; Hejl R Gravit Space Biol Bull; 1997 Jun; 10(2):91-6. PubMed ID: 11540125 [TBL] [Abstract][Full Text] [Related]
7. Biosatellite II--physiological and somatic effects on insects. Buckhold B Life Sci Space Res; 1969; 7():77-83. PubMed ID: 11949690 [TBL] [Abstract][Full Text] [Related]
8. DNA repair in microgravity: studies on bacteria and mammalian cells in the experiments REPAIR and KINETICS. Horneck G; Rettberg P; Baumstark-Khan C; Rink H; Kozubek S; Schäfer M; Schmitz C J Biotechnol; 1996 Jun; 47(2-3):99-112. PubMed ID: 8987564 [TBL] [Abstract][Full Text] [Related]
9. The effects of microgravity on the character of progeny of Drosophila melanogaster. Li XG; Wang GZ Microgravity Sci Technol; 1992 Jul; 5(2):94-7. PubMed ID: 11541480 [TBL] [Abstract][Full Text] [Related]
10. Insect gravitational biology: ground-based and shuttle flight experiments using the beetle Tribolium castaneum. Bennett RL; Abbott MK; Denell RE J Exp Zool; 1994 Jul; 269(3):242-52. PubMed ID: 11536636 [TBL] [Abstract][Full Text] [Related]
11. Pleurodeles waltl, amphibian, Urodele, is a suitable biological model for embryological and physiological space experiments on a vertebrate. Gualandris-Parisot L; Husson D; Foulquier F; Kan P; Davet J; Aimar C; Dournon C; Duprat AM Adv Space Res; 2001; 28(4):569-78. PubMed ID: 11799990 [TBL] [Abstract][Full Text] [Related]
12. Biological experiments on the orbital station Salyut 4. Dubinin NP; Glembotsky YL; Vaulina EN; Merkis AI; Laurinavichius RS; Palmbakh LR; Grozdova TY; Holikova TA; Yaroshyus AV; Mashinsky AL; Izupak EA; Konshin NI Life Sci Space Res; 1977; 15():267-72. PubMed ID: 11962500 [TBL] [Abstract][Full Text] [Related]
13. Effects of microgravity on osteoblast growth. Hughes-Fulford M; Tjandrawinata R; Fitzgerald J; Gasuad K; Gilbertson V Gravit Space Biol Bull; 1998 May; 11(2):51-60. PubMed ID: 11540639 [TBL] [Abstract][Full Text] [Related]
14. Insight into mechanisms of reduced orthostatic performance after exposure to microgravity: comparison of ground-based and space flight data. Convertino VA J Gravit Physiol; 1998 Jul; 5(1):P85-8. PubMed ID: 11542376 [TBL] [Abstract][Full Text] [Related]
15. Activation signals of T lymphocytes in microgravity. Pippia P; Sciola L; Cogoli-Greuter M; Meloni MA; Spano A; Cogoli A J Biotechnol; 1996 Jun; 47(2-3):215-22. PubMed ID: 8987568 [TBL] [Abstract][Full Text] [Related]
16. The sea urchin larva, a suitable model for biomineralisation studies in space (IML-2 ESA Biorack experiment '24-F urchin'). Marthy HJ; Gasset G; Tixador R; Schatt P; Eche B; Dessommes A; Giacomini T; Tap G; Gorand D J Biotechnol; 1996 Jun; 47(2-3):167-77. PubMed ID: 11536758 [TBL] [Abstract][Full Text] [Related]
17. Drosophila melanogaster, a model system for comparative studies on the responses to real and simulated microgravity. Marco R; Laván DA; van Loon JJ; Leandro LJ; Larkin OJ; Dijkstra C; Anthony P; Villa A; Davey MR; Lowe KC; Power JB; Medina FJ J Gravit Physiol; 2007 Jul; 14(1):P125-6. PubMed ID: 18372731 [TBL] [Abstract][Full Text] [Related]
18. Brine shrimp development in space: ground-based data to shuttle flight results. Spooner BS; DeBell L; Hawkins L; Metcalf J; Guikema JA; Rosowski J Trans Kans Acad Sci; 1992; 95(1-2):87-92. PubMed ID: 11537988 [TBL] [Abstract][Full Text] [Related]
19. Swimming kinematics and respiratory behaviour of Xenopus laevis larvae raised in altered gravity. Fejtek M; Souza K; Neff A; Wassersug R J Exp Biol; 1998 Jun; 201(Pt 12):1917-26. PubMed ID: 9722430 [TBL] [Abstract][Full Text] [Related]
20. The effect of exposure to microgravity on the development and structural organisation of plant protoplasts flown on Biokosmos 9. Rasmussen O; Klimchuk DA; Kordyum EL; Danevich LA; Tarnavskaya EB; Lozovaya VV; Tairbekov MG; Baggerud C; Iversen TH Physiol Plant; 1992 Jan; 84(1):162-70. PubMed ID: 11541143 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]