BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 8987595)

  • 1. Role of the intrachain disulfide bond of ovalbumin during conversion into S-ovalbumin.
    Takahashi N; Tatsumi E; Orita T; Hirose M
    Biosci Biotechnol Biochem; 1996 Sep; 60(9):1464-8. PubMed ID: 8987595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of an intrachain disulfide bond in the conformation and stability of ovalbumin.
    Takahashi N; Koseki T; Doi E; Hirose M
    J Biochem; 1991 Jun; 109(6):846-51. PubMed ID: 1939004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformational state of disulfide-reduced ovalbumin at acidic pH.
    Tatsumi E; Yoshimatsu D; Hirose M
    Biosci Biotechnol Biochem; 1999 Jul; 63(7):1285-90. PubMed ID: 10478455
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural properties of recombinant ovalbumin and its transformation into a thermostabilized form by alkaline treatment.
    Arii Y; Takahashi N; Tatsumi E; Hirose M
    Biosci Biotechnol Biochem; 1999 Aug; 63(8):1392-9. PubMed ID: 10501000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Refolding of urea-denatured ovalbumin that comprises non-native disulfide isomers.
    Onda M; Tatsumi E; Takahashi N; Hirose M
    J Biochem; 1997 Jul; 122(1):83-9. PubMed ID: 9276674
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformational state of ovalbumin at acidic pH as evaluated by a novel approach utilizing intrachain sulfhydryl-mixed disulfide exchange reactions.
    Tatsumi E; Yoshimatsu D; Hirose M
    Biochemistry; 1998 Sep; 37(35):12351-9. PubMed ID: 9724549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Refolding process of ovalbumin from urea-denatured state. Evidence for the involvement of nonproductive side chain interactions in an early intermediate.
    Onda M; Tatsumi E; Takahashi N; Hirose M
    J Biol Chem; 1997 Feb; 272(7):3973-9. PubMed ID: 9020102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heating of an ovalbumin solution at neutral pH and high temperature.
    Photchanachai S; Mehta A; Kitabatake N
    Biosci Biotechnol Biochem; 2002 Aug; 66(8):1635-40. PubMed ID: 12353621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of the disulfide bridge in the stability and structural integrity of ovalbumin evaluated by site-directed mutagenesis.
    Ishimaru T; Ito K; Tanaka M; Tanaka S; Matsudomi N
    Biosci Biotechnol Biochem; 2011; 75(3):544-9. PubMed ID: 21389617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The presence of heat-stable conformers of ovalbumin affects properties of thermally formed aggregates.
    de Groot J; de Jongh HH
    Protein Eng; 2003 Dec; 16(12):1035-40. PubMed ID: 14983084
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Denatured state of ovalbumin in high concentrations of urea as evaluated by disulfide rearrangement analysis.
    Tatsumi E; Takahashi N; Hirose M
    J Biol Chem; 1994 Nov; 269(45):28062-7. PubMed ID: 7961742
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Erythrina caffra trypsin inhibitor retains its native structure and function after reducing its disulfide bonds.
    Lehle K; Wrba A; Jaenicke R
    J Mol Biol; 1994 Jun; 239(2):276-84. PubMed ID: 8196058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly ordered molten globule-like state of ovalbumin at acidic pH: native-like fragmentation by protease and selective modification of Cys367 with dithiodipyridine.
    Tatsumi E; Hirose M
    J Biochem; 1997 Aug; 122(2):300-8. PubMed ID: 9378706
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reversible denaturation of disulfide-reduced ovalbumin and its reoxidation generating the native cystine cross-link.
    Takahashi N; Hirose M
    J Biol Chem; 1992 Jun; 267(16):11565-72. PubMed ID: 1597484
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disruption of the disulfide bonds of recombinant murine interleukin-6 induces formation of a partially unfolded state.
    Zhang JG; Matthews JM; Ward LD; Simpson RJ
    Biochemistry; 1997 Mar; 36(9):2380-9. PubMed ID: 9054543
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature control for kinetic refolding of heat-denatured ovalbumin.
    Tani F; Shirai N; Onishi T; Venelle F; Yasumoto K; Doi E
    Protein Sci; 1997 Jul; 6(7):1491-502. PubMed ID: 9232650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Disulfide formation and stability of a cysteine-rich repeat protein from Helicobacter pylori.
    Devi VS; Sprecher CB; Hunziker P; Mittl PR; Bosshard HR; Jelesarov I
    Biochemistry; 2006 Feb; 45(6):1599-607. PubMed ID: 16460007
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermostabilization of ovalbumin in a developing egg by an alkalinity-regulated, two-step process.
    Hatta H; Nomura M; Takahashi N; Hirose M
    Biosci Biotechnol Biochem; 2001 Sep; 65(9):2021-7. PubMed ID: 11676015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rhodanese conformational changes permit oxidation to give disulfides that form in a kinetically determined sequence.
    Horowitz PM; Hua S
    Biochim Biophys Acta; 1995 Jun; 1249(2):161-7. PubMed ID: 7599169
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of protein conformation on disulfide bond formation in the oxidative folding of ribonuclease T1.
    Frech C; Schmid FX
    J Mol Biol; 1995 Aug; 251(1):135-49. PubMed ID: 7643382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.