BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 8987614)

  • 1. Analysis of the Escherichia coli gntT and gntU genes and comparison of the products with their homologues.
    Yamada M; Kawai T; Izu H
    Biosci Biotechnol Biochem; 1996 Sep; 60(9):1548-50. PubMed ID: 8987614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cloning and molecular genetic characterization of the Escherichia coli gntR, gntK, and gntU genes of GntI, the main system for gluconate metabolism.
    Tong S; Porco A; Isturiz T; Conway T
    J Bacteriol; 1996 Jun; 178(11):3260-9. PubMed ID: 8655507
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of the gntT gene encoding a high-affinity gluconate permease in Escherichia coli.
    Izu H; Kawai T; Yamada Y; Aoshima H; Adachi O; Yamada M
    Gene; 1997 Oct; 199(1-2):203-10. PubMed ID: 9358057
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of a novel transporter family that includes multiple Escherichia coli gluconate transporters and their homologues.
    Peekhaus N; Tong S; Reizer J; Saier MH; Murray E; Conway T
    FEMS Microbiol Lett; 1997 Feb; 147(2):233-8. PubMed ID: 9119199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The gntP gene of Escherichia coli involved in gluconate uptake.
    Klemm P; Tong S; Nielsen H; Conway T
    J Bacteriol; 1996 Jan; 178(1):61-7. PubMed ID: 8550444
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular genetic characterization of the Escherichia coli gntT gene of GntI, the main system for gluconate metabolism.
    Porco A; Peekhaus N; Bausch C; Tong S; Isturiz T; Conway T
    J Bacteriol; 1997 Mar; 179(5):1584-90. PubMed ID: 9045817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene organization and transcriptional regulation of the gntRKU operon involved in gluconate uptake and catabolism of Escherichia coli.
    Izu H; Adachi O; Yamada M
    J Mol Biol; 1997 Apr; 267(4):778-93. PubMed ID: 9135111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The gluconate high affinity transport of GntI in Escherichia coli involves a multicomponent complex system.
    Porco A; Alonso G; Istúriz T
    J Basic Microbiol; 1998; 38(5-6):395-404. PubMed ID: 9871335
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GntP is the Escherichia coli Fructuronic acid transporter and belongs to the UxuR regulon.
    Bates Utz C; Nguyen AB; Smalley DJ; Anderson AB; Conway T
    J Bacteriol; 2004 Nov; 186(22):7690-6. PubMed ID: 15516583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selection of lacZ operon fusions in genes of gluconate metabolism in E. coli. characterization of a gntT::lacZ fusion.
    Porco A; Istúriz T
    Acta Cient Venez; 1991; 42(5):270-5. PubMed ID: 1843569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of the Escherichia coli codBA operon encoding cytosine permease and cytosine deaminase.
    Danielsen S; Kilstrup M; Barilla K; Jochimsen B; Neuhard J
    Mol Microbiol; 1992 May; 6(10):1335-44. PubMed ID: 1640834
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of the gluconate (gnt) operon of Bacillus subtilis.
    Reizer A; Deutscher J; Saier MH; Reizer J
    Mol Microbiol; 1991 May; 5(5):1081-9. PubMed ID: 1659648
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel membrane-associated threonine permease encoded by the tdcC gene of Escherichia coli.
    Sumantran VN; Schweizer HP; Datta P
    J Bacteriol; 1990 Aug; 172(8):4288-94. PubMed ID: 2115866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new family of integral membrane proteins involved in transport of aromatic amino acids in Escherichia coli.
    Sarsero JP; Wookey PJ; Gollnick P; Yanofsky C; Pittard AJ
    J Bacteriol; 1991 May; 173(10):3231-4. PubMed ID: 2022620
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cloning and complete nucleotide sequence of the Escherichia coli glutamine permease operon (glnHPQ).
    Nohno T; Saito T; Hong JS
    Mol Gen Genet; 1986 Nov; 205(2):260-9. PubMed ID: 3027504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nucleotide sequences and operon structure of plasmid-borne genes mediating uptake and utilization of raffinose in Escherichia coli.
    Aslanidis C; Schmid K; Schmitt R
    J Bacteriol; 1989 Dec; 171(12):6753-63. PubMed ID: 2556373
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nucleotide sequence and homology comparison of two genes of the sulfate transport operon from the cyanobacterium Synechocystis sp. PCC 6803.
    Kohn C; Schumann J
    Plant Mol Biol; 1993 Jan; 21(2):409-12. PubMed ID: 8425067
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cloning and sequencing of the pheP gene, which encodes the phenylalanine-specific transport system of Escherichia coli.
    Pi J; Wookey PJ; Pittard AJ
    J Bacteriol; 1991 Jun; 173(12):3622-9. PubMed ID: 1711024
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The pheA/tyrA/aroF region from Erwinia herbicola: an emerging comparative basis for analysis of gene organization and regulation in enteric bacteria.
    Xia T; Zhao G; Jensen RA
    J Mol Evol; 1993 Feb; 36(2):107-20. PubMed ID: 8094464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cloning, nucleotide sequence, and characterization of mtr, the structural gene for a tryptophan-specific permease of Escherichia coli K-12.
    Heatwole VM; Somerville RL
    J Bacteriol; 1991 Jan; 173(1):108-15. PubMed ID: 1987112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.