These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 8987630)

  • 1. Model-based automation of baker's yeast production.
    Ringbom K; Rothberg A; Saxén B
    J Biotechnol; 1996 Oct; 51(1):73-82. PubMed ID: 8987630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On-line evolutionary optimization of an industrial fed-batch yeast fermentation process.
    Yüzgeç U; Türker M; Hocalar A
    ISA Trans; 2009 Jan; 48(1):79-92. PubMed ID: 18849027
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Steady-state and dynamic flux balance analysis of ethanol production by Saccharomyces cerevisiae.
    Hjersted JL; Henson MA
    IET Syst Biol; 2009 May; 3(3):167-79. PubMed ID: 19449977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving industrial full-scale production of baker's yeast by optimizing aeration control.
    Blanco CA; Rayo J; Giralda JM
    J AOAC Int; 2008; 91(3):607-13. PubMed ID: 18567307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-scale analysis of Saccharomyces cerevisiae metabolism and ethanol production in fed-batch culture.
    Hjersted JL; Henson MA; Mahadevan R
    Biotechnol Bioeng; 2007 Aug; 97(5):1190-204. PubMed ID: 17243146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards the design of an optimal strategy for the production of ergosterol from Saccharomyces cerevisiae yeasts.
    Náhlík J; Hrnčiřík P; Mareš J; Rychtera M; Kent CA
    Biotechnol Prog; 2017 May; 33(3):838-848. PubMed ID: 28127893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transition rate kinetics from ethanol oxidation to glucose utilisation within a structured model of baker's yeast.
    Dantigny P; Gruber M
    Appl Microbiol Biotechnol; 1996 Mar; 45(1-2):199-203. PubMed ID: 8920192
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Triacetic acid lactone production in industrial Saccharomyces yeast strains.
    Saunders LP; Bowman MJ; Mertens JA; Da Silva NA; Hector RE
    J Ind Microbiol Biotechnol; 2015 May; 42(5):711-21. PubMed ID: 25682106
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generally applicable fed-batch culture concept based on the detection of metabolic state by on-line balancing.
    Jobé AM; Herwig C; Surzyn M; Walker B; Marison I; von Stockar U
    Biotechnol Bioeng; 2003 Jun; 82(6):627-39. PubMed ID: 12673762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-dimensional fluorescence spectroscopy: a novel approach for controlling fed-batch cultivations.
    Hantelmann K; Kollecker M; Hüll D; Hitzmann B; Scheper T
    J Biotechnol; 2006 Feb; 121(3):410-7. PubMed ID: 16125265
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of yeast fed-batch process through regulation of extracellular ethanol concentration.
    Cannizzaro C; Valentinotti S; von Stockar U
    Bioprocess Biosyst Eng; 2004 Dec; 26(6):377-83. PubMed ID: 15597198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fed-batch culture strategy for high yield of baker's yeast with high fermentative activity.
    Li Y; Chen J; Song Q; Lun S; Katakura Y
    Chin J Biotechnol; 1997; 13(2):105-13. PubMed ID: 9343709
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fed-batch cultivation of Saccharomyces cerevisiae in a hyperbaric bioreactor.
    Belo I; Pinheiro R; Mota M
    Biotechnol Prog; 2003; 19(2):665-71. PubMed ID: 12675615
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling of the aerobic growth of Saccharomyces cerevisiae on mixtures of glucose and ethanol in continuous culture.
    Dantigny P
    J Biotechnol; 1995 Dec; 43(3):213-20. PubMed ID: 8590647
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of continuous fed-batch fermentation process using neural network based model predictive controller.
    Kiran AU; Jana AK
    Bioprocess Biosyst Eng; 2009 Oct; 32(6):801-8. PubMed ID: 19259705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Maximizing biomass concentration in baker's yeast process by using a decoupled geometric controller for substrate and dissolved oxygen.
    Chopda VR; Rathore AS; Gomes J
    Bioresour Technol; 2015 Nov; 196():160-8. PubMed ID: 26233328
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiology of Saccharomyces cerevisiae during cell cycle oscillations.
    Duboc P; Marison I; von Stockar U
    J Biotechnol; 1996 Oct; 51(1):57-72. PubMed ID: 8987629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation of the optimal concentrations of residual sugar and cell growth rate for a fed-batch culture of Saccharomyces cerevisiae.
    He RQ; Li CY; Xu J; Zhao XA
    Appl Biochem Biotechnol; 1996 Sep; 60(3):229-44. PubMed ID: 8933717
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermodynamic analysis of fermentation and anaerobic growth of baker's yeast for ethanol production.
    Teh KY; Lutz AE
    J Biotechnol; 2010 May; 147(2):80-7. PubMed ID: 20184925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ethanol yield and volatile compound content in fermentation of agave must by Kluyveromyces marxianus UMPe-1 comparing with Saccharomyces cerevisiae baker's yeast used in tequila production.
    López-Alvarez A; Díaz-Pérez AL; Sosa-Aguirre C; Macías-Rodríguez L; Campos-García J
    J Biosci Bioeng; 2012 May; 113(5):614-8. PubMed ID: 22280963
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.