These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 8987647)

  • 1. Growth and fermentation responses of Selenomonas ruminantium to limiting and non-limiting concentrations of ammonium chloride.
    Ricke SC; Schaefer DM
    Appl Microbiol Biotechnol; 1996 Sep; 46(2):169-75. PubMed ID: 8987647
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dilution rates influence ammonia-assimilating enzyme activities and cell parameters of Selenomonas ruminantium strain D in continuous (glucose-limited) culture.
    Patterson JA; Chalova VI; Hespell RB; Ricke SC
    J Appl Microbiol; 2010 Jan; 108(1):357-65. PubMed ID: 19702858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pathway and sites for energy conservation in the metabolism of glucose by Selenomonas ruminantium.
    Melville SB; Michel TA; Macy JM
    J Bacteriol; 1988 Nov; 170(11):5298-304. PubMed ID: 3141385
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of laidlomycin propionate and monensin on glucose utilization and nutrient transport by Streptococcus bovis and Selenomonas ruminantium.
    Wampler JL; Martin SA; Hill GM
    J Anim Sci; 1998 Oct; 76(10):2730-6. PubMed ID: 9814916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of lactate production by Selenomonas ruminantium: homotropic activation of lactate dehydrogenase by pyruvate.
    Wallace RJ
    J Gen Microbiol; 1978 Jul; 107(1):45-52. PubMed ID: 103995
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of thymol on ruminal microorganisms.
    Evans JD; Martin SA
    Curr Microbiol; 2000 Nov; 41(5):336-40. PubMed ID: 11014870
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioenergetics and end-product regulation of Clostridium thermosaccharolyticum in response to nutrient limitation.
    Hill PW; Klapatch TR; Lynd LR
    Biotechnol Bioeng; 1993 Sep; 42(7):873-83. PubMed ID: 18613135
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Divergent utilization patterns of grass fructan, inulin, and other nonfiber carbohydrates by ruminal microbes.
    Hall MB; Weimer PJ
    J Dairy Sci; 2016 Jan; 99(1):245-57. PubMed ID: 26601577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of extracellular hydrogen on organic acid utilization by the ruminal bacterium Selenomonas ruminantium.
    Martin SA; Park CM
    Curr Microbiol; 1996 Jun; 32(6):327-31. PubMed ID: 8640106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of maintenance energy expenditures and growth yields among several rumen bacteria grown on continuous culture.
    Russell JB; Baldwin RL
    Appl Environ Microbiol; 1979 Mar; 37(3):537-43. PubMed ID: 16345359
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heat production by ruminal bacteria in continuous culture and its relationship to maintenance energy.
    Russell JB
    J Bacteriol; 1986 Nov; 168(2):694-701. PubMed ID: 3782021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationship of lactate dehydrogenase specificity and growth rate to lactate metabolism by Selenomonas ruminantium.
    Appl Microbiol; 1975 Dec; 30(6):916-21. PubMed ID: 174490
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Factors affecting lactate and malate utilization by Selenomonas ruminantium.
    Evans JD; Martin SA
    Appl Environ Microbiol; 1997 Dec; 63(12):4853-8. PubMed ID: 9471965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Dicarboxylic Acids and Aspergillus oryzae Fermentation Extract on Lactate Uptake by the Ruminal Bacterium Selenomonas ruminantium.
    Nisbet DJ; Martin SA
    Appl Environ Microbiol; 1990 Nov; 56(11):3515-8. PubMed ID: 16348354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of CH4 production by Methanobacterium ruminantium on the fermentation of glucose and lactate by Selenomonas ruminantium.
    Chen M; Wolin MJ
    Appl Environ Microbiol; 1977 Dec; 34(6):756-9. PubMed ID: 596874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of sugars and malate on ruminal microorganisms.
    Martin SA; Sullivan HM; Evans JD
    J Dairy Sci; 2000 Nov; 83(11):2574-9. PubMed ID: 11104277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of a Saccharomyces cerevisiae culture on ruminal bacteria that utilize lactate and digest cellulose.
    Callaway ES; Martin SA
    J Dairy Sci; 1997 Sep; 80(9):2035-44. PubMed ID: 9313145
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Enhanced production of curdlan by Alcaligenes faecalis by selective feeding with ammonia water during the cell growth phase of fermentation].
    Wu J; Zhan X; Liu H; Zheng Z
    Sheng Wu Gong Cheng Xue Bao; 2008 Jun; 24(6):1035-9. PubMed ID: 18807988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of a Saccharomyces cerevisiae culture on lactate utilization by the ruminal bacterium Selenomonas ruminantium.
    Nisbet DJ; Martin SA
    J Anim Sci; 1991 Nov; 69(11):4628-33. PubMed ID: 1752834
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of nitrate addition to a diet on fermentation and microbial populations in the rumen of goats, with special reference to Selenomonas ruminantium having the ability to reduce nitrate and nitrite.
    Asanuma N; Yokoyama S; Hino T
    Anim Sci J; 2015 Apr; 86(4):378-84. PubMed ID: 25439583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.