These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 8987648)
1. The effects of pantothenate deficiency and acetate addition on anaerobic batch fermentation of glucose by Saccharomyces cerevisiae. Taherzadeh MJ; Lidén G; Gustafsson L; Niklasson C Appl Microbiol Biotechnol; 1996 Sep; 46(2):176-82. PubMed ID: 8987648 [TBL] [Abstract][Full Text] [Related]
2. Significance of pantothenate for glucose fermentation by Oenococcus oeni and for suppression of the erythritol and acetate production. Richter H; Vlad D; Unden G Arch Microbiol; 2001 Jan; 175(1):26-31. PubMed ID: 11271417 [TBL] [Abstract][Full Text] [Related]
3. INFLUENCE OF AERATION AND OF PANTOTHENATE ON GROWTH YIELDS OF ZYMOMONAS MOBILIS. BELAUICH JP; SENEZ JC J Bacteriol; 1965 May; 89(5):1195-200. PubMed ID: 14292985 [TBL] [Abstract][Full Text] [Related]
5. Co-cultivation of Saccharomyces cerevisiae strains combines advantages of different metabolic engineering strategies for improved ethanol yield. van Aalst ACA; van der Meulen IS; Jansen MLA; Mans R; Pronk JT Metab Eng; 2023 Nov; 80():151-162. PubMed ID: 37751790 [TBL] [Abstract][Full Text] [Related]
6. Optimizing the balance between heterologous acetate- and CO2-reduction pathways in anaerobic cultures of Saccharomyces cerevisiae strains engineered for low-glycerol production. van Aalst ACA; Geraats EH; Jansen MLA; Mans R; Pronk JT FEMS Yeast Res; 2023 Jan; 23():. PubMed ID: 37942589 [TBL] [Abstract][Full Text] [Related]
7. Application of acetate buffer in pH adjustment of sorghum mash and its influence on fuel ethanol fermentation. Zhao R; Bean SR; Crozier-Dodson BA; Fung DY; Wang D J Ind Microbiol Biotechnol; 2009 Jan; 36(1):75-85. PubMed ID: 18839230 [TBL] [Abstract][Full Text] [Related]
8. Fermentation of mixed glucose-xylose substrates by engineered strains of Saccharomyces cerevisiae: role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization. Krahulec S; Petschacher B; Wallner M; Longus K; Klimacek M; Nidetzky B Microb Cell Fact; 2010 Mar; 9():16. PubMed ID: 20219100 [TBL] [Abstract][Full Text] [Related]
9. Repeated-batch fermentations of xylose and glucose-xylose mixtures using a respiration-deficient Saccharomyces cerevisiae engineered for xylose metabolism. Kim SR; Lee KS; Choi JH; Ha SJ; Kweon DH; Seo JH; Jin YS J Biotechnol; 2010 Nov; 150(3):404-7. PubMed ID: 20933550 [TBL] [Abstract][Full Text] [Related]
10. Anaerobic glycerol production by Saccharomyces cerevisiae strains under hyperosmotic stress. Modig T; Granath K; Adler L; Lidén G Appl Microbiol Biotechnol; 2007 May; 75(2):289-96. PubMed ID: 17221190 [TBL] [Abstract][Full Text] [Related]
11. Kinetic modeling of plasmid bioproduction in Escherichia coli DH5α cultures over different carbon-source compositions. Lopes MB; Martins G; Calado CR J Biotechnol; 2014 Sep; 186():38-48. PubMed ID: 24998768 [TBL] [Abstract][Full Text] [Related]
12. Energetics and product formation by Saccharomyces cerevisiae grown in anaerobic chemostats under nitrogen limitation. Lidén G; Persson A; Gustafsson L; Niklasson C Appl Microbiol Biotechnol; 1995 Nov; 43(6):1034-8. PubMed ID: 8590653 [TBL] [Abstract][Full Text] [Related]
13. Ethanol fermentation in an immobilized cell reactor using Saccharomyces cerevisiae. Najafpour G; Younesi H; Syahidah Ku Ismail K Bioresour Technol; 2004 May; 92(3):251-60. PubMed ID: 14766158 [TBL] [Abstract][Full Text] [Related]
14. Increasing anaerobic acetate consumption and ethanol yields in Saccharomyces cerevisiae with NADPH-specific alcohol dehydrogenase. Henningsen BM; Hon S; Covalla SF; Sonu C; Argyros DA; Barrett TF; Wiswall E; Froehlich AC; Zelle RM Appl Environ Microbiol; 2015 Dec; 81(23):8108-17. PubMed ID: 26386051 [TBL] [Abstract][Full Text] [Related]
15. Physiologic and metabolic characterization of Saccharomyces cerevisiae reveals limitations in the synthesis of the triterpene squalene. Ebert BE; Czarnotta E; Blank LM FEMS Yeast Res; 2018 Dec; 18(8):. PubMed ID: 30053028 [TBL] [Abstract][Full Text] [Related]
16. Growth requirements of pyruvate-decarboxylase-negative Saccharomyces cerevisiae. Flikweert MT; de Swaaf M; van Dijken JP; Pronk JT FEMS Microbiol Lett; 1999 May; 174(1):73-9. PubMed ID: 10234824 [TBL] [Abstract][Full Text] [Related]
17. [Study on the organic acids metabolism in Candida glycerolgenesis under different fermentation conditions]. Jin H; Zhuge J Wei Sheng Wu Xue Bao; 2001 Dec; 41(6):704-8. PubMed ID: 12552827 [TBL] [Abstract][Full Text] [Related]
18. Physiology of Saccharomyces cerevisiae in anaerobic glucose-limited chemostat cultures. Verduyn C; Postma E; Scheffers WA; van Dijken JP J Gen Microbiol; 1990 Mar; 136(3):395-403. PubMed ID: 1975265 [TBL] [Abstract][Full Text] [Related]
19. L-Lactic acid production from glucose and xylose with engineered strains of Saccharomyces cerevisiae: aeration and carbon source influence yields and productivities. Novy V; Brunner B; Nidetzky B Microb Cell Fact; 2018 Apr; 17(1):59. PubMed ID: 29642896 [TBL] [Abstract][Full Text] [Related]
20. Use of pantothenate as a metabolic switch increases the genetic stability of farnesene producing Saccharomyces cerevisiae. Sandoval CM; Ayson M; Moss N; Lieu B; Jackson P; Gaucher SP; Horning T; Dahl RH; Denery JR; Abbott DA; Meadows AL Metab Eng; 2014 Sep; 25():215-26. PubMed ID: 25076380 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]