These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 8987686)

  • 1. Variation in sessile microflora during biofilm formation on AISI-304 stainless steel coupons.
    de França FP; Lutterbach MT
    J Ind Microbiol; 1996 Jul; 17(1):6-10. PubMed ID: 8987686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A dual-electrochemical cell to study the biocorrosion of stainless steel.
    Lopes FA; Perrin S; Féron D
    Water Sci Technol; 2007; 55(8-9):499-504. PubMed ID: 17547022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics of biofilm formation by Listeria monocytogenes on stainless steel under mono-species and mixed-culture simulated fish processing conditions and chemical disinfection challenges.
    Papaioannou E; Giaouris ED; Berillis P; Boziaris IS
    Int J Food Microbiol; 2018 Feb; 267():9-19. PubMed ID: 29275280
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biofilm colonization dynamics and its influence on the corrosion resistance of austenitic UNS S31603 stainless steel exposed to Gulf of Mexico seawater.
    Acuña N; Ortega-Morales BO; Valadez-González A
    Mar Biotechnol (NY); 2006; 8(1):62-70. PubMed ID: 16453199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of beta 1-4 linked polymers in the biofilm structure of marine Pseudomonas sp. CE-2 on 304 stainless steel coupons.
    Jain A; Bhosle NB
    Biofouling; 2008; 24(4):283-90. PubMed ID: 18568666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of Escherichia coli O157:H7 on stainless steel using Pseudomonas veronii biofilms.
    Kim Y; Kim H; Beuchat LR; Ryu JH
    Lett Appl Microbiol; 2018 May; 66(5):394-399. PubMed ID: 29444347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anaerobic Corrosion of 304 Stainless Steel Caused by the
    Jia R; Yang D; Xu D; Gu T
    Front Microbiol; 2017; 8():2335. PubMed ID: 29230206
    [No Abstract]   [Full Text] [Related]  

  • 8. Synergistic effect of steam and lactic acid against Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes biofilms on polyvinyl chloride and stainless steel.
    Ban GH; Park SH; Kim SO; Ryu S; Kang DH
    Int J Food Microbiol; 2012 Jul; 157(2):218-23. PubMed ID: 22647677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biofilm formation in water cooling systems.
    Lutterbach MT; de França FP
    World J Microbiol Biotechnol; 1996 Jul; 12(4):391-4. PubMed ID: 24415316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbiologically influenced corrosion of 304 stainless steel by aerobic Pseudomonas NCIMB 2021 bacteria: AFM and XPS study.
    Yuan SJ; Pehkonen SO
    Colloids Surf B Biointerfaces; 2007 Sep; 59(1):87-99. PubMed ID: 17582747
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SRB-mediated corrosion of marine submerged AISI 1020 steel under impressed current cathodic protection.
    Liduino V; Galvão M; Brasil S; Sérvulo E
    Colloids Surf B Biointerfaces; 2021 Jun; 202():111701. PubMed ID: 33756296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of the surface roughness of AISI 316L stainless steel on biofilm adhesion in a seawater-cooled tubular heat exchanger-condenser.
    García S; Trueba A; Vega LM; Madariaga E
    Biofouling; 2016 Nov; 32(10):1185-1193. PubMed ID: 27744709
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The corrosion behaviour of galvanized steel in cooling tower water containing a biocide and a corrosion inhibitor.
    Minnoş B; Ilhan-Sungur E; Çotuk A; Güngör ND; Cansever N
    Biofouling; 2013; 29(3):223-35. PubMed ID: 23439037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Propensity for biofilm formation by aerobic mesophilic and thermophilic spore forming bacteria isolated from Chinese milk powders.
    Sadiq FA; Flint S; Yuan L; Li Y; Liu T; He G
    Int J Food Microbiol; 2017 Dec; 262():89-98. PubMed ID: 28968534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pioneer colonizer microorganisms in biofilm formation on galvanized steel in a simulated recirculating cooling-water system.
    Doğruöz N; Göksay D; Ilhan-Sungur E; Cotuk A
    J Basic Microbiol; 2009 Sep; 49 Suppl 1():S5-12. PubMed ID: 19455520
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resistance of pathogenic bacteria on the surface of stainless steel depending on attachment form and efficacy of chemical sanitizers.
    Bae YM; Baek SY; Lee SY
    Int J Food Microbiol; 2012 Feb; 153(3):465-73. PubMed ID: 22225983
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Marine prosthecate bacteria involved in the ennoblement of stainless steel.
    Baker PW; Ito K; Watanabe K
    Environ Microbiol; 2003 Oct; 5(10):925-32. PubMed ID: 14510846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbiota formed on attached stainless steel coupons correlates with the natural biofilm of the sink surface in domestic kitchens.
    Moen B; Røssvoll E; Måge I; Møretrø T; Langsrud S
    Can J Microbiol; 2016 Feb; 62(2):148-60. PubMed ID: 26758935
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics of biofilm formation by pathogenic and spoilage microorganisms under conditions that mimic the poultry, meat, and egg processing industries.
    Iñiguez-Moreno M; Gutiérrez-Lomelí M; Avila-Novoa MG
    Int J Food Microbiol; 2019 Aug; 303():32-41. PubMed ID: 31129476
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A survey of culturable aerobic and anaerobic marine bacteria in de novo biofilm formation on natural substrates in St. Andrews Bay, Scotland.
    Finnegan L; Garcia-Melgares M; Gmerek T; Huddleston WR; Palmer A; Robertson A; Shapiro S; Unkles SE
    Antonie Van Leeuwenhoek; 2011 Oct; 100(3):399-404. PubMed ID: 21638112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.