BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 8987687)

  • 41. Bioprospecting thermotolerant ethanologenic yeasts for simultaneous saccharification and fermentation from diverse environments.
    Choudhary J; Singh S; Nain L
    J Biosci Bioeng; 2017 Mar; 123(3):342-346. PubMed ID: 27856231
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Pilot-scale ethanol production from rice straw hydrolysates using xylose-fermenting Pichia stipitis.
    Lin TH; Huang CF; Guo GL; Hwang WS; Huang SL
    Bioresour Technol; 2012 Jul; 116():314-9. PubMed ID: 22537402
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Fermentation of xylose into ethanol by a new fungus strain Pestalotiopsis sp. XE-1.
    Pang ZW; Liang JJ; Huang RB
    J Ind Microbiol Biotechnol; 2011 Aug; 38(8):927-33. PubMed ID: 20824485
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Direct ethanol production from hemicellulosic materials of rice straw by use of an engineered yeast strain codisplaying three types of hemicellulolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells.
    Sakamoto T; Hasunuma T; Hori Y; Yamada R; Kondo A
    J Biotechnol; 2012 Apr; 158(4):203-10. PubMed ID: 21741417
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Ethanol production from macaúba (Acrocomia aculeata) presscake hemicellulosic hydrolysate by Candida boidinii UFMG14.
    Gonçalves DB; Batista AF; Rodrigues MQRB; Nogueira KMV; Santos VL
    Bioresour Technol; 2013 Oct; 146():261-266. PubMed ID: 23941709
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Xylitol production from rice straw hemicellulose hydrolyzate by polyacrylic hydrogel thin films with immobilized Candida subtropicalis WF79.
    Liaw WC; Chen CS; Chang WS; Chen KP
    J Biosci Bioeng; 2008 Feb; 105(2):97-105. PubMed ID: 18343334
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ethanol production from wheat straw hemicellulose hydrolysate by Pichia stipitis.
    Nigam JN
    J Biotechnol; 2001 Apr; 87(1):17-27. PubMed ID: 11267696
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Simultaneous bioconversion of glucose and xylose to ethanol by Saccharomyces cerevisiae in the presence of xylose isomerase.
    Chandrakant P; Bisaria VS
    Appl Microbiol Biotechnol; 2000 Mar; 53(3):301-9. PubMed ID: 10772470
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Continuous co-production of ethanol and xylitol from rice straw hydrolysate in a membrane bioreactor.
    Zahed O; Jouzani GS; Abbasalizadeh S; Khodaiyan F; Tabatabaei M
    Folia Microbiol (Praha); 2016 May; 61(3):179-89. PubMed ID: 26354791
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Enhanced ethanol production from industrial lignocellulose hydrolysates by a hydrolysate-cofermenting Saccharomyces cerevisiae strain.
    Huang S; Liu T; Peng B; Geng A
    Bioprocess Biosyst Eng; 2019 May; 42(5):883-896. PubMed ID: 30820665
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Ethanol production from xylose by a recombinant Candida utilis strain expressing protein-engineered xylose reductase and xylitol dehydrogenase.
    Tamakawa H; Ikushima S; Yoshida S
    Biosci Biotechnol Biochem; 2011; 75(10):1994-2000. PubMed ID: 21979076
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Designing simultaneous saccharification and fermentation for improved xylose conversion by a recombinant strain of Saccharomyces cerevisiae.
    Olofsson K; Rudolf A; Lidén G
    J Biotechnol; 2008 Mar; 134(1-2):112-20. PubMed ID: 18294716
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A novel strategy for production of ethanol and recovery of xylose from simulated corncob hydrolysate.
    Sun J; Wang J; Tian K; Dong Z; Liu X; Permaul K; Singh S; Prior BA; Wang Z
    Biotechnol Lett; 2018 May; 40(5):781-788. PubMed ID: 29564679
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Phosphorus-31 and carbon-13 nuclear magnetic resonance study of glucose and xylose metabolism in agarose-immobilized Candida tropicalis.
    Lohmeier-Vogel EM; Hahn-Hägerdal B; Vogel HJ
    Appl Environ Microbiol; 1995 Apr; 61(4):1420-5. PubMed ID: 7747962
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Enhanced ethanol production by fermentation of rice straw hydrolysate without detoxification using a newly adapted strain of Pichia stipitis.
    Huang CF; Lin TH; Guo GL; Hwang WS
    Bioresour Technol; 2009 Sep; 100(17):3914-20. PubMed ID: 19349164
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Performance of immobilized Zymomonas mobilis 31821 (pZB5) on actual hydrolysates produced by Arkenol technology.
    Yamada T; Fatigati MA; Zhang M
    Appl Biochem Biotechnol; 2002; 98-100():899-907. PubMed ID: 12018312
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Fermentation performance assessment of a genomically integrated xylose-utilizing recombinant of Zymomonas mobilis 39676.
    Lawford HG; Rousseau JD
    Appl Biochem Biotechnol; 2001; 91-93():117-31. PubMed ID: 11963841
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Isolation of a novel strain of Candida shehatae for ethanol production at elevated temperature.
    Tanimura A; Nakamura T; Watanabe I; Ogawa J; Shima J
    Springerplus; 2012; 1():27. PubMed ID: 23961357
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Ethanol production from Rice (Oryza sativa) straw by simultaneous saccharification and cofermentation.
    Goel A; Wati L
    Indian J Exp Biol; 2016 Aug; 54(8):525-9. PubMed ID: 28577514
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Exceptional hexose-fermenting ability of the xylitol-producing yeast Candida guilliermondii FTI 20037.
    Wen X; Sidhu S; Horemans SKC; Sooksawat N; Harner NK; Bajwa PK; Yuan Z; Lee H
    J Biosci Bioeng; 2016 Jun; 121(6):631-637. PubMed ID: 26596373
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.