BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 8987687)

  • 61. Construction of a Candida utilis strain with ratio-optimized expression of xylose-metabolizing enzyme genes by cocktail multicopy integration method.
    Tamakawa H; Ikushima S; Yoshida S
    J Biosci Bioeng; 2013 May; 115(5):532-9. PubMed ID: 23294574
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Organosolv pretreatment of rice straw for efficient acetone, butanol, and ethanol production.
    Amiri H; Karimi K; Zilouei H
    Bioresour Technol; 2014; 152():450-6. PubMed ID: 24321608
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Characterization of recombinant E. coli ATCC 11303 (pLOI 297) in the conversion of cellulose and xylose to ethanol.
    Padukone N; Evans KW; McMillan JD; Wyman CE
    Appl Microbiol Biotechnol; 1995 Oct; 43(5):850-5. PubMed ID: 7576551
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Potential inhibitors from wet oxidation of wheat straw and their effect on growth and ethanol production by Thermoanaerobacter mathranii.
    Klinke HB; Thomsen AB; Ahring BK
    Appl Microbiol Biotechnol; 2001 Dec; 57(5-6):631-8. PubMed ID: 11778871
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Ethanol production from wood hydrolysate using genetically engineered Zymomonas mobilis.
    Yanase H; Miyawaki H; Sakurai M; Kawakami A; Matsumoto M; Haga K; Kojima M; Okamoto K
    Appl Microbiol Biotechnol; 2012 Jun; 94(6):1667-78. PubMed ID: 22573268
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The influence of initial xylose concentration, agitation, and aeration on ethanol production by Pichia stipitis from rice straw hemicellulosic hydrolysate.
    Silva JP; Mussatto SI; Roberto IC
    Appl Biochem Biotechnol; 2010 Nov; 162(5):1306-15. PubMed ID: 19946760
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Glucose and xylose co-fermentation of pretreated wheat straw using mutants of S. cerevisiae TMB3400.
    Erdei B; Frankó B; Galbe M; Zacchi G
    J Biotechnol; 2013 Mar; 164(1):50-8. PubMed ID: 23262129
    [TBL] [Abstract][Full Text] [Related]  

  • 68. [Specific features of fermentation of D-xylose and D-glucose by xylose-assimilating yeasts].
    Iablochkova EN; Bolotnikova OI; Mikhaĭlova NP; Nemova NN; Ginak AI
    Prikl Biokhim Mikrobiol; 2003; 39(3):302-6. PubMed ID: 12754827
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Characterization of a recombinant flocculent Saccharomyces cerevisiae strain that co-ferments glucose and xylose: I. Influence of the ratio of glucose/xylose on ethanol production.
    Matsushika A; Sawayama S
    Appl Biochem Biotechnol; 2013 Feb; 169(3):712-21. PubMed ID: 23271622
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Bioprocessing of bagasse hydrolysate for ethanol and xylitol production using thermotolerant yeast.
    Kumar S; Dheeran P; Singh SP; Mishra IM; Adhikari DK
    Bioprocess Biosyst Eng; 2015 Jan; 38(1):39-47. PubMed ID: 25090978
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Bioethanol production from mixed sugars by Scheffersomyces stipitis free and immobilized cells, and co-cultures with Saccharomyces cerevisiae.
    De Bari I; De Canio P; Cuna D; Liuzzi F; Capece A; Romano P
    N Biotechnol; 2013 Sep; 30(6):591-7. PubMed ID: 23454083
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Candida utilis assimilates oligomeric sugars in rice straw hydrolysate via the Calcium-Capturing-by-Carbonation (CaCCO) process for glutathione- and cell-biomass production.
    Koyama Y; Zhao R; Ike M; Tokuyasu K
    Bioresour Technol; 2014 Nov; 172():413-417. PubMed ID: 25241674
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Evaluation of novel xylose-fermenting yeast strains from Brazilian forests for hemicellulosic ethanol production from sugarcane bagasse.
    Martiniano SE; Chandel AK; Soares LC; Pagnocca FC; da Silva SS
    3 Biotech; 2013 Oct; 3(5):345-352. PubMed ID: 28324336
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Repeated-batch fermentations of xylose and glucose-xylose mixtures using a respiration-deficient Saccharomyces cerevisiae engineered for xylose metabolism.
    Kim SR; Lee KS; Choi JH; Ha SJ; Kweon DH; Seo JH; Jin YS
    J Biotechnol; 2010 Nov; 150(3):404-7. PubMed ID: 20933550
    [TBL] [Abstract][Full Text] [Related]  

  • 75. [Evaluation on glucose-xylose co-fermentation by a recombinant Zymomonas mobilis strain].
    Feng Q; Li S; Wang L; Li T
    Sheng Wu Gong Cheng Xue Bao; 2012 Jan; 28(1):37-47. PubMed ID: 22667107
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Strain improvement of thermotolerant Saccharomyces cerevisiae VS strain for better utilization of lignocellulosic substrates.
    Pasha C; Kuhad RC; Rao LV
    J Appl Microbiol; 2007 Nov; 103(5):1480-9. PubMed ID: 17953559
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Steam pretreatment and fermentation of the straw material "Paja Brava" using simultaneous saccharification and co-fermentation.
    Carrasco C; Baudel H; Peñarrieta M; Solano C; Tejeda L; Roslander C; Galbe M; Lidén G
    J Biosci Bioeng; 2011 Feb; 111(2):167-74. PubMed ID: 21081285
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Ethanol production from wheat straw by Saccharomyces cerevisiae and Scheffersomyces stipitis co-culture in batch and continuous system.
    Karagöz P; Özkan M
    Bioresour Technol; 2014 Apr; 158():286-93. PubMed ID: 24614063
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Separate hydrolysis and co-fermentation for improved xylose utilization in integrated ethanol production from wheat meal and wheat straw.
    Erdei B; Frankó B; Galbe M; Zacchi G
    Biotechnol Biofuels; 2012 Mar; 5():12. PubMed ID: 22410131
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Bioconversion of brewer's spent grains to bioethanol.
    White JS; Yohannan BK; Walker GM
    FEMS Yeast Res; 2008 Nov; 8(7):1175-84. PubMed ID: 18547331
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.