BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 8987832)

  • 1. Local control of leg movements and motor patterns during grooming in locusts.
    Berkowitz A; Laurent G
    J Neurosci; 1996 Dec; 16(24):8067-78. PubMed ID: 8987832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Central generation of grooming motor patterns and interlimb coordination in locusts.
    Berkowitz A; Laurent G
    J Neurosci; 1996 Dec; 16(24):8079-91. PubMed ID: 8987833
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of sensory signals from the insect coxa-trochanteral joint in controlling motor activity of the femur-tibia joint.
    Akay T; Bässler U; Gerharz P; Büschges A
    J Neurophysiol; 2001 Feb; 85(2):594-604. PubMed ID: 11160496
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Motor patterns during kicking movements in the locust.
    Burrows M
    J Comp Physiol A; 1995 Mar; 176(3):289-305. PubMed ID: 7707268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Motor activity and trajectory control during escape jumping in the locust Locusta migratoria.
    Santer RD; Yamawaki Y; Rind FC; Simmons PJ
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2005 Oct; 191(10):965-75. PubMed ID: 16044332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characteristics of dynamic postural reactions in the locust hindleg.
    Zill SN; Frazier SF; Lankenau J; Jepson-Innes K
    J Comp Physiol A; 1992 Jul; 170(6):761-72. PubMed ID: 1432853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graded limb targeting in an insect is caused by the shift of a single movement pattern.
    Durr V; Matheson T
    J Neurophysiol; 2003 Sep; 90(3):1754-65. PubMed ID: 12773499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactions between segmental leg central pattern generators during fictive rhythms in the locust.
    Ryckebusch S; Laurent G
    J Neurophysiol; 1994 Dec; 72(6):2771-85. PubMed ID: 7897488
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coupling of efferent neuromodulatory neurons to rhythmical leg motor activity in the locust.
    Baudoux S; Duch C; Morris OT
    J Neurophysiol; 1998 Jan; 79(1):361-70. PubMed ID: 9425205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pattern generation for walking and searching movements of a stick insect leg. I. Coordination of motor activity.
    Fischer H; Schmidt J; Haas R; Büschges A
    J Neurophysiol; 2001 Jan; 85(1):341-53. PubMed ID: 11152734
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Responses of spiking local interneurones in the locust to proprioceptive signals from the femoral chordotonal organ.
    Burrows M
    J Comp Physiol A; 1988 Dec; 164(2):207-17. PubMed ID: 3244128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coordinated righting behaviour in locusts.
    Faisal AA; Matheson T
    J Exp Biol; 2001 Feb; 204(Pt 4):637-48. PubMed ID: 11171346
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The vibrational startle response of the desert locust Schistocerca gregaria.
    Friedel T
    J Exp Biol; 1999 Aug; 202(Pt 16):2151-9. PubMed ID: 10409486
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crawling motor patterns induced by pilocarpine in isolated larval nerve cords of Manduca sexta.
    Johnston RM; Levine RB
    J Neurophysiol; 1996 Nov; 76(5):3178-95. PubMed ID: 8930265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ballistic movements of jumping legs implemented as variable components of cricket behaviour.
    Hustert R; Baldus M
    J Exp Biol; 2010 Dec; 213(Pt 23):4055-64. PubMed ID: 21075947
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonspiking local interneurons in insect leg motor control. I. Common layout and species-specific response properties of femur-tibia joint control pathways in stick insect and locust.
    Büschges A; Wolf H
    J Neurophysiol; 1995 May; 73(5):1843-60. PubMed ID: 7623085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Morphology and action of the hind leg joints controlling jumping in froghopper insects.
    Burrows M
    J Exp Biol; 2006 Dec; 209(Pt 23):4622-37. PubMed ID: 17114397
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An evaluation of the role of identified interneurons in triggering kicks and jumps in the locust.
    Gynther IC; Pearson KG
    J Neurophysiol; 1989 Jan; 61(1):45-57. PubMed ID: 2918348
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contralateral movement and extensor force generation alter flexion phase muscle coordination in pedaling.
    Ting LH; Kautz SA; Brown DA; Zajac FE
    J Neurophysiol; 2000 Jun; 83(6):3351-65. PubMed ID: 10848554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.