These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 8987883)

  • 1. Dielectrophoretic separation of bacteria using a conductivity gradient.
    Markx GH; Dyda PA; Pethig R
    J Biotechnol; 1996 Nov; 51(2):175-80. PubMed ID: 8987883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrophoretic and dielectrophoretic field gradient technique for separating bioparticles.
    Pysher MD; Hayes MA
    Anal Chem; 2007 Jun; 79(12):4552-7. PubMed ID: 17487977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Applications of dielectrophoresis in biotechnology.
    Pethig R; Markx GH
    Trends Biotechnol; 1997 Oct; 15(10):426-32. PubMed ID: 9351287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Separation of submicron bioparticles by dielectrophoresis.
    Morgan H; Hughes MP; Green NG
    Biophys J; 1999 Jul; 77(1):516-25. PubMed ID: 10388776
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insulator-based dielectrophoresis for the selective concentration and separation of live bacteria in water.
    Lapizco-Encinas BH; Simmons BA; Cummings EB; Fintschenko Y
    Electrophoresis; 2004 Jun; 25(10-11):1695-704. PubMed ID: 15188259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dielectrophoretic separation of bioparticles in microdevices: a review.
    Jubery TZ; Srivastava SK; Dutta P
    Electrophoresis; 2014 Mar; 35(5):691-713. PubMed ID: 24338825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dielectric characterization of bacterial cells using dielectrophoresis.
    Sanchis A; Brown AP; Sancho M; Martínez G; Sebastián JL; Muñoz S; Miranda JM
    Bioelectromagnetics; 2007 Jul; 28(5):393-401. PubMed ID: 17471505
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dielectrophoretic separation of Bacillus subtilis spores from environmental diesel particles.
    Fatoyinbo HO; Hughes MP; Martin SP; Pashby P; Labeed FH
    J Environ Monit; 2007 Jan; 9(1):87-90. PubMed ID: 17213947
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A continuous flow microfluidic device based on contactless dielectrophoresis for bioparticles enrichment.
    Rahmani A; Mohammadi A; Kalhor HR
    Electrophoresis; 2018 Feb; 39(3):445-455. PubMed ID: 28944476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scaling down constriction-based (electrodeless) dielectrophoresis devices for trapping nanoscale bioparticles in physiological media of high-conductivity.
    Chaurey V; Rohani A; Su YH; Liao KT; Chou CF; Swami NS
    Electrophoresis; 2013 Apr; 34(7):1097-104. PubMed ID: 23436401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superpositioned dielectrophoresis for enhanced trapping efficiency.
    Aldaeus F; Lin Y; Roeraade J; Amberg G
    Electrophoresis; 2005 Nov; 26(22):4252-9. PubMed ID: 16240293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electric manipulation of bioparticles and macromolecules on microfabricated electrodes.
    Huang Y; Ewalt KL; Tirado M; Haigis R; Forster A; Ackley D; Heller MJ; O'Connell JP; Krihak M
    Anal Chem; 2001 Apr; 73(7):1549-59. PubMed ID: 11321308
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An insulator-based (electrodeless) dielectrophoretic concentrator for microbes in water.
    Lapizco-Encinas BH; Davalos RV; Simmons BA; Cummings EB; Fintschenko Y
    J Microbiol Methods; 2005 Sep; 62(3):317-26. PubMed ID: 15941604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dielectrophoretic manipulation of particles and cells using insulating ridges in faceted prism microchannels.
    Barrett LM; Skulan AJ; Singh AK; Cummings EB; Fiechtner GJ
    Anal Chem; 2005 Nov; 77(21):6798-804. PubMed ID: 16255576
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combined dielectrophoretic and impedance system for on-chip controlled bacteria concentration: Application to Escherichia coli.
    Del Moral-Zamora B; Punter-Villagrassa J; Oliva-Brañas AM; Álvarez-Azpeitia JM; Colomer-Farrarons J; Samitier J; Homs-Corbera A; Miribel-Català PL
    Electrophoresis; 2015 May; 36(9-10):1130-41. PubMed ID: 25752513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The coupling of immunomagnetic enrichment of bacteria with paper-based platform.
    Ilhan H; Guven B; Dogan U; Torul H; Evran S; Çetin D; Suludere Z; Saglam N; Boyaci İH; Tamer U
    Talanta; 2019 Aug; 201():245-252. PubMed ID: 31122419
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bacterial handling under the influence of non-uniform electric fields: dielectrophoretic and electrohydrodynamic effects.
    Fernádez-Morales FH; Duarte JE; Samitier-Martí J
    An Acad Bras Cienc; 2008 Dec; 80(4):627-38. PubMed ID: 19039486
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lab-on-a-chip device for continuous particle and cell separation based on electrical properties via alternating current dielectrophoresis.
    Cetin B; Li D
    Electrophoresis; 2010 Sep; 31(18):3035-43. PubMed ID: 20872609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Manipulation and trapping of sub-micron bioparticles using dielectrophoresis.
    Green NG; Morgan H; Milner JJ
    J Biochem Biophys Methods; 1997 Sep; 35(2):89-102. PubMed ID: 9350515
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluidic dielectrophoresis: The polarization and displacement of electrical liquid interfaces.
    Mavrogiannis N; Desmond M; Gagnon ZR
    Electrophoresis; 2015 Jul; 36(13):1386-95. PubMed ID: 25523138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.