These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 8987886)

  • 1. Removal of Cr(VI) from ground water by Saccharomyces cerevisiae.
    Krauter P; Martinelli R; Williams K; Martins S
    Biodegradation; 1996 Aug; 7(4):277-86. PubMed ID: 8987886
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro reduction of hexavalent chromium by cytoplasmic fractions of Pannonibacter phragmitetus LSSE-09 under aerobic and anaerobic conditions.
    Xu L; Luo M; Jiang C; Wei X; Kong P; Liang X; Zhao J; Yang L; Liu H
    Appl Biochem Biotechnol; 2012 Feb; 166(4):933-41. PubMed ID: 22161214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ bioremediation of hexavalent chromium in presence of iron by dried sludge bacteria exposed to high chromium concentration.
    Bansal N; Coetzee JJ; Chirwa EMN
    Ecotoxicol Environ Saf; 2019 May; 172():281-289. PubMed ID: 30716662
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aerobic chromate reduction by chromium-resistant bacteria isolated from serpentine soil.
    Pal A; Paul AK
    Microbiol Res; 2004; 159(4):347-54. PubMed ID: 15646381
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of hexavalent chromium removal by dead fungal biomass of Aspergillus niger.
    Park D; Yun YS; Jo JH; Park JM
    Water Res; 2005 Feb; 39(4):533-40. PubMed ID: 15707625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromium (VI) reduction in activated sludge bacteria exposed to high chromium loading: Brits culture (South Africa).
    Molokwane PE; Meli KC; Nkhalambayausi-Chirwa EM
    Water Res; 2008 Nov; 42(17):4538-48. PubMed ID: 18760438
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hexavalent chromium sorption by biomass of chromium tolerant Pythium sp.
    Kavita B; Limbachia J; Keharia H
    J Basic Microbiol; 2011 Apr; 51(2):173-82. PubMed ID: 21298678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biosorption properties of hexavalent chromium on to biomass of tobacco-leaf residues.
    Chen Y; Tang G; Yu QJ; Zhang T; Chen Y; Gu T
    Environ Technol; 2009 Sep; 30(10):1003-10. PubMed ID: 19886424
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chromium (VI) reduction in activated sludge bacteria exposed to high chromium loading.
    Molokwane PE; Meli CK; Chirwa EM
    Water Sci Technol; 2008; 58(2):399-405. PubMed ID: 18701792
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics of chromium (VI) reduction by a type strain Shewanella alga under different growth conditions.
    Guha H; Jayachandran K; Maurrasse F
    Environ Pollut; 2001; 115(2):209-18. PubMed ID: 11706794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromium (VI) biosorption by Saccharomyces cerevisiae subjected to chemical and thermal treatments.
    De Rossi A; Rigon MR; Zaparoli M; Braido RD; Colla LM; Dotto GL; Piccin JS
    Environ Sci Pollut Res Int; 2018 Jul; 25(19):19179-19186. PubMed ID: 29808404
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal of hexavalent chromium in tannery wastewater by Bacillus cereus.
    Zhao C; Yang Q; Chen W; Teng B
    Can J Microbiol; 2012 Jan; 58(1):23-8. PubMed ID: 22149215
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of Cr(VI) reduction in continuous-flow activated sludge systems.
    Stasinakis AS; Thomaidis NS; Mamais D; Lekkas TD
    Chemosphere; 2004 Dec; 57(9):1069-77. PubMed ID: 15504465
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characteristics and kinetics of hexavalent chromium reduction by gallic acid in aqueous solutions.
    Chen Z; Zhao Y; Li Q
    Water Sci Technol; 2015; 71(11):1694-700. PubMed ID: 26038935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hexavalent chromium removal in vitro and from industrial wastes, using chromate-resistant strains of filamentous fungi indigenous to contaminated wastes.
    Acevedo-Aguilar FJ; Espino-Saldaña AE; Leon-Rodriguez IL; Rivera-Cano ME; Avila-Rodriguez M; Wrobel K; Wrobel K; Lappe P; Ulloa M; Gutiérrez-Corona JF
    Can J Microbiol; 2006 Sep; 52(9):809-15. PubMed ID: 17110972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduction remediation of hexavalent chromium by bacterial flora in Cr(VI) aqueous solution.
    Wang Q; Xu X; Zhao F; Liu Z; Xu J
    Water Sci Technol; 2010; 61(11):2889-96. PubMed ID: 20489262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficacy of Acinetobacter sp. B9 for simultaneous removal of phenol and hexavalent chromium from co-contaminated system.
    Bhattacharya A; Gupta A; Kaur A; Malik D
    Appl Microbiol Biotechnol; 2014 Dec; 98(23):9829-41. PubMed ID: 25062955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Short-term batch studies on biological removal of chromium from synthetic wastewater using activated sludge biomass.
    Chen Y; Gu G
    Bioresour Technol; 2005 Oct; 96(15):1722-9. PubMed ID: 16023576
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromium species behaviour in the activated sludge process.
    Stasinakis AS; Thomaidis NS; Mamais D; Karivali M; Lekkas TD
    Chemosphere; 2003 Aug; 52(6):1059-67. PubMed ID: 12781239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hexavalent chromium reduction with scrap iron in continuous-flow system Part 1: effect of feed solution pH.
    Gheju M; Iovi A; Balcu I
    J Hazard Mater; 2008 May; 153(1-2):655-62. PubMed ID: 17933460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.