These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 8988006)
1. NMR characterization of side chain flexibility and backbone structure in the type I antifreeze protein at near freezing temperatures. Gronwald W; Chao H; Reddy DV; Davies PL; Sykes BD; Sönnichsen FD Biochemistry; 1996 Dec; 35(51):16698-704. PubMed ID: 8988006 [TBL] [Abstract][Full Text] [Related]
2. Ice-binding structure and mechanism of an antifreeze protein from winter flounder. Sicheri F; Yang DS Nature; 1995 Jun; 375(6530):427-31. PubMed ID: 7760940 [TBL] [Abstract][Full Text] [Related]
3. Structure-function relationship in the globular type III antifreeze protein: identification of a cluster of surface residues required for binding to ice. Chao H; Sönnichsen FD; DeLuca CI; Sykes BD; Davies PL Protein Sci; 1994 Oct; 3(10):1760-9. PubMed ID: 7849594 [TBL] [Abstract][Full Text] [Related]
4. The role of side chain conformational flexibility in surface recognition by Tenebrio molitor antifreeze protein. Daley ME; Sykes BD Protein Sci; 2003 Jul; 12(7):1323-31. PubMed ID: 12824479 [TBL] [Abstract][Full Text] [Related]
5. Mimicry of ice structure by surface hydroxyls and water of a beta-helix antifreeze protein. Liou YC; Tocilj A; Davies PL; Jia Z Nature; 2000 Jul; 406(6793):322-4. PubMed ID: 10917536 [TBL] [Abstract][Full Text] [Related]
6. A natural variant of type I antifreeze protein with four ice-binding repeats is a particularly potent antifreeze. Chao H; Hodges RS; Kay CM; Gauthier SY; Davies PL Protein Sci; 1996 Jun; 5(6):1150-6. PubMed ID: 8762146 [TBL] [Abstract][Full Text] [Related]
7. Structural basis for the binding of a globular antifreeze protein to ice. Jia Z; DeLuca CI; Chao H; Davies PL Nature; 1996 Nov; 384(6606):285-8. PubMed ID: 8918883 [TBL] [Abstract][Full Text] [Related]
8. A diminished role for hydrogen bonds in antifreeze protein binding to ice. Chao H; Houston ME; Hodges RS; Kay CM; Sykes BD; Loewen MC; Davies PL; Sönnichsen FD Biochemistry; 1997 Dec; 36(48):14652-60. PubMed ID: 9398184 [TBL] [Abstract][Full Text] [Related]
9. Solution conformation of C-linked antifreeze glycoprotein analogues and modulation of ice recrystallization. Tam RY; Rowley CN; Petrov I; Zhang T; Afagh NA; Woo TK; Ben RN J Am Chem Soc; 2009 Nov; 131(43):15745-53. PubMed ID: 19824639 [TBL] [Abstract][Full Text] [Related]
10. A Ca2+-dependent bacterial antifreeze protein domain has a novel beta-helical ice-binding fold. Garnham CP; Gilbert JA; Hartman CP; Campbell RL; Laybourn-Parry J; Davies PL Biochem J; 2008 Apr; 411(1):171-80. PubMed ID: 18095937 [TBL] [Abstract][Full Text] [Related]
11. Solution NMR structure and folding dynamics of the N terminus of a rat non-muscle alpha-tropomyosin in an engineered chimeric protein. Greenfield NJ; Huang YJ; Palm T; Swapna GV; Monleon D; Montelione GT; Hitchcock-DeGregori SE J Mol Biol; 2001 Sep; 312(4):833-47. PubMed ID: 11575936 [TBL] [Abstract][Full Text] [Related]
12. Comparative modeling of the three-dimensional structure of type II antifreeze protein. Sönnichsen FD; Sykes BD; Davies PL Protein Sci; 1995 Mar; 4(3):460-71. PubMed ID: 7540906 [TBL] [Abstract][Full Text] [Related]
13. Two-dimensional NMR spectroscopy: an application to the study of flexibility of protein molecules. Nagayama K Adv Biophys; 1981; 14():139-204. PubMed ID: 7015809 [TBL] [Abstract][Full Text] [Related]
14. Understanding the mechanism of ice binding by type III antifreeze proteins. Antson AA; Smith DJ; Roper DI; Lewis S; Caves LS; Verma CS; Buckley SL; Lillford PJ; Hubbard RE J Mol Biol; 2001 Jan; 305(4):875-89. PubMed ID: 11162099 [TBL] [Abstract][Full Text] [Related]
15. Solid-state NMR on a type III antifreeze protein in the presence of ice. Siemer AB; McDermott AE J Am Chem Soc; 2008 Dec; 130(51):17394-9. PubMed ID: 19053456 [TBL] [Abstract][Full Text] [Related]
16. Alternative roles for putative ice-binding residues in type I antifreeze protein. Loewen MC; Chao H; Houston ME; Baardsnes J; Hodges RS; Kay CM; Sykes BD; Sönnichsen FD; Davies PL Biochemistry; 1999 Apr; 38(15):4743-9. PubMed ID: 10200162 [TBL] [Abstract][Full Text] [Related]
17. Effect of a mutation on the structure and dynamics of an alpha-helical antifreeze protein in water and ice. Graether SP; Slupsky CM; Sykes BD Proteins; 2006 May; 63(3):603-10. PubMed ID: 16437556 [TBL] [Abstract][Full Text] [Related]
18. Hydrogen bonding on the ice-binding face of a beta-helical antifreeze protein indicated by amide proton NMR chemical shifts. Daley ME; Graether SP; Sykes BD Biochemistry; 2004 Oct; 43(41):13012-7. PubMed ID: 15476394 [TBL] [Abstract][Full Text] [Related]
19. Beta-helix structure and ice-binding properties of a hyperactive antifreeze protein from an insect. Graether SP; Kuiper MJ; Gagné SM; Walker VK; Jia Z; Sykes BD; Davies PL Nature; 2000 Jul; 406(6793):325-8. PubMed ID: 10917537 [TBL] [Abstract][Full Text] [Related]
20. Use of proline mutants to help solve the NMR solution structure of type III antifreeze protein. Chao H; Davies PL; Sykes BD; Sönnichsen FD Protein Sci; 1993 Sep; 2(9):1411-28. PubMed ID: 8401227 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]