BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 8988237)

  • 1. Biochemical properties of acetyl- and butyrylcholinesterase in human meningioma.
    Sáez-Valero J; Vidal CJ
    Biochim Biophys Acta; 1996 Dec; 1317(3):210-8. PubMed ID: 8988237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monomers and dimers of acetylcholinesterase in human meningioma are anchored to the membrane by glycosylphosphatidylinositol.
    Sáez-Valero J; Vidal CJ
    Neurosci Lett; 1995 Aug; 195(2):101-4. PubMed ID: 7478260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular forms of acetyl- and butyrylcholinesterase in normal and dystrophic mouse brain.
    Moral-Naranjo MT; Cabezas-Herrera J; Vidal CJ
    J Neurosci Res; 1996 Jan; 43(2):224-34. PubMed ID: 8820970
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of molecular forms of acetyl- and butyrylcholinesterase in human acoustic neurinomas.
    García-Ayllón MS; Sáez-Valero J; Piqueras-Pérez C; Vidal CJ
    Neurosci Lett; 1999 Oct; 274(1):56-60. PubMed ID: 10530519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular forms of acetyl- and butyrylcholinesterase in human glioma.
    Sáez-Valero J; Poza-Cisneros G; Vidal CJ
    Neurosci Lett; 1996 Mar; 206(2-3):173-6. PubMed ID: 8710179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of acetylcholinesterase and butyrylcholinesterase forms in normal and dystrophic Lama2dy mouse heart.
    Gómez JL; Moral-Naranjo MT; Campoy FJ; Vidal CJ
    J Neurosci Res; 1999 May; 56(3):295-306. PubMed ID: 10336259
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amphiphilic and hydrophilic forms of acetyl- and butyrylcholinesterase in human brain.
    Sáez-Valero J; Tornel PL; Muñoz-Delgado E; Vidal CJ
    J Neurosci Res; 1993 Aug; 35(6):678-89. PubMed ID: 8411269
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Muscular dystrophy alters the processing of light acetylcholinesterase but not butyrylcholinesterase forms in liver of Lama2(dy) mice.
    Gómez JL; García-Ayllón MS; Campoy FJ; Vidal CJ
    J Neurosci Res; 2000 Oct; 62(1):134-45. PubMed ID: 11002295
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ricinus communis agglutinin I reacting and non-reacting butyrylcholinesterase in human cerebrospinal fluid.
    Tornel PL; Sáez-Valero J; Vidal CJ
    Neurosci Lett; 1992 Sep; 145(1):59-62. PubMed ID: 1461569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular properties of acetylcholinesterase in mouse spleen.
    Nieto-Cerón S; Moral-Naranjo MT; Muñoz-Delgado E; Vidal CJ; Campoy FJ
    Neurochem Int; 2004 Jul; 45(1):129-39. PubMed ID: 15082230
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Breast cancer metastasis alters acetylcholinesterase activity and the composition of enzyme forms in axillary lymph nodes.
    Ruiz-Espejo F; Cabezas-Herrera J; Illana J; Campoy FJ; Muñoz-Delgado E; Vidal CJ
    Breast Cancer Res Treat; 2003 Jul; 80(1):105-14. PubMed ID: 12889604
    [TBL] [Abstract][Full Text] [Related]  

  • 12. G4 forms of acetylcholinesterase and butyrylcholinesterase in normal and dystrophic mouse muscle differ in their interaction with Ricinus communis agglutinin.
    Cabezas-Herrera J; Moral-Naranjo MT; Campoy FJ; Vidal CJ
    Biochim Biophys Acta; 1994 Feb; 1225(3):283-8. PubMed ID: 8312375
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of hybrid cholinesterase forms consisting of acetyl- and butyrylcholinesterase subunits in human glioma.
    García-Ayllón MS; Sáez-Valero J; Muñoz-Delgado E; Vidal CJ
    Neuroscience; 2001; 107(2):199-208. PubMed ID: 11731094
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acetyl- and butyrylcholinesterase activities in the rat retina and retinal pigment epithelium.
    Sánchez-Chávez G; Vidal CJ; Salceda R
    J Neurosci Res; 1995 Aug; 41(5):655-62. PubMed ID: 7563246
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increased butyrylcholinesterase levels in microsomal membranes of dystrophic Lama2dy mouse muscle.
    Moral-Naranjo MT; Campoy FJ; Cabezas-Herrera J; Vidal CJ
    J Neurochem; 1999 Sep; 73(3):1138-44. PubMed ID: 10461905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glycosylation of cholinesterase forms in brain from normal and dystrophic Lama2dy mice.
    Moral-Naranjo MT; Cabezas-Herrera J; Campoy FJ; Vidal CJ
    Neurosci Lett; 1997 Apr; 226(1):45-8. PubMed ID: 9153638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amphiphilic properties of acetylcholinesterase monomers in mouse plasma.
    García-Ayllón MS; Gómez JL; Vidal CJ
    Neurosci Lett; 1999 Apr; 265(3):211-4. PubMed ID: 10327168
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amphiphilic and nonamphiphilic forms of Torpedo cholinesterases: I. Solubility and aggregation properties.
    Bon S; Toutant JP; Méflah K; Massoulié J
    J Neurochem; 1988 Sep; 51(3):776-85. PubMed ID: 3411326
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purification and properties of hydrophilic dimers of acetylcholinesterase from mouse erythrocytes.
    Gómez JL; Nieto-Cerón S; Campoy FJ; Muñoz-Delgado E; Vidal CJ
    Int J Biochem Cell Biol; 2003 Jul; 35(7):1109-18. PubMed ID: 12672481
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular forms of acetylcholinesterase in two sublines of human erythroleukemia K562 cells. Sensitivity or resistance to phosphatidylinositol-specific phospholipase C and biosynthesis.
    Toutant JP; Richards MK; Krall JA; Rosenberry TL
    Eur J Biochem; 1990 Jan; 187(1):31-8. PubMed ID: 2298208
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.