BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 89886)

  • 41. Cytoplasmic matrix proteins in central nervous system presynaptic terminals: turnover and effects of osmotic lysis.
    Garner JA
    Brain Res; 1990 Sep; 526(2):186-94. PubMed ID: 2257481
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Axonal transport of microtubule-associated protein 1B (MAP1B) in the sciatic nerve of adult rat: distinct transport rates of different isoforms.
    Ma D; Himes BT; Shea TB; Fischer I
    J Neurosci; 2000 Mar; 20(6):2112-20. PubMed ID: 10704485
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Multiple phosphorylated variants of the high molecular mass subunit of neurofilaments in axons of retinal cell neurons: characterization and evidence for their differential association with stationary and moving neurofilaments.
    Lewis SE; Nixon RA
    J Cell Biol; 1988 Dec; 107(6 Pt 2):2689-701. PubMed ID: 3144556
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Axonal transport of [35S]methionine labeled proteins in Xenopus optic nerve: phases of transport and the effects of nerve crush on protein patterns.
    Szaro BG; Faulkner LA; Hunt RK; Loh YP
    Brain Res; 1984 Apr; 297(2):337-55. PubMed ID: 6202364
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Axonal transport of a subclass of tau proteins: evidence for the regional differentiation of microtubules in neurons.
    Tytell M; Brady ST; Lasek RJ
    Proc Natl Acad Sci U S A; 1984 Mar; 81(5):1570-4. PubMed ID: 6200879
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Slow transport in a nerve with embryonic characteristics, the olfactory nerve.
    Cancalon P; Brady ST; Lasek RJ
    Brain Res; 1988 Feb; 466(2):275-85. PubMed ID: 2452001
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Axonal transport of taurine along neonatal and young adult rat optic axons.
    Politis MJ; Ingoglia NA
    Brain Res; 1979 Apr; 166(2):221-31. PubMed ID: 85473
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Inhibition of axoplasmic transport in the developing visual system of the rat-II, Quantitative analysis of alterations in transport of tritiated proline or fucose.
    Matthews MA; West LC; Clarkson DB
    Neuroscience; 1982 Feb; 7(2):385-404. PubMed ID: 6176908
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cellular origin and biosynthesis of rat optic nerve proteins: a two-dimensional gel analysis.
    Strocchi P; Gilbert JM; Benowitz LI; Dahl D; Lewis ER
    J Neurochem; 1984 Aug; 43(2):349-57. PubMed ID: 6204011
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The Retinal Ganglion Cell Transportome Identifies Proteins Transported to Axons and Presynaptic Compartments in the Visual System In Vivo.
    Schiapparelli LM; Shah SH; Ma Y; McClatchy DB; Sharma P; Li J; Yates JR; Goldberg JL; Cline HT
    Cell Rep; 2019 Aug; 28(7):1935-1947.e5. PubMed ID: 31412257
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Slowly migrating axonal polypeptides. Inequalities in their rate and amount of transport between two branches of bifurcating axons.
    Mori H; Komiya Y; Kurokawa M
    J Cell Biol; 1979 Jul; 82(1):174-84. PubMed ID: 90050
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Apolipoprotein E is synthesized in the retina by Müller glial cells, secreted into the vitreous, and rapidly transported into the optic nerve by retinal ganglion cells.
    Amaratunga A; Abraham CR; Edwards RB; Sandell JH; Schreiber BM; Fine RE
    J Biol Chem; 1996 Mar; 271(10):5628-32. PubMed ID: 8621425
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Patterns of expression of brain-derived neurotrophic factor and tyrosine kinase B mRNAs and distribution and ultrastructural localization of their proteins in the visual pathway of the adult rat.
    Avwenagha O; Bird MM; Lieberman AR; Yan Q; Campbell G
    Neuroscience; 2006 Jul; 140(3):913-28. PubMed ID: 16626872
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Axonal transport of nucleosides, nucleotides and 4S RNA in the neonatal rat visual system.
    Politis MJ; Ingoglia NA
    Brain Res; 1979 Jun; 169(2):343-56. PubMed ID: 87246
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Slow transport rates of cytoskeletal proteins change during regeneration of axotomized retinal neurons in adult rats.
    McKerracher L; Vidal-Sanz M; Aguayo AJ
    J Neurosci; 1990 Feb; 10(2):641-8. PubMed ID: 2106015
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Calcium/calmodulin-dependent protein kinase IIalpha in optic axons moves with slow axonal transport and undergoes posttranslational modification.
    Lund LM; McQuarrie IG
    Biochem Biophys Res Commun; 2001 Dec; 289(5):1157-61. PubMed ID: 11741313
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Biogenesis of presynaptic terminal proteins.
    Garner JA; Mahler HR
    J Neurochem; 1987 Sep; 49(3):905-15. PubMed ID: 2440990
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Fast axonal transport in auditory neurons of the guinea pig: a rapidly turned-over glycoprotein.
    Tytell M; Gulley RL; Wenthold RJ; Lasek RJ
    Proc Natl Acad Sci U S A; 1980 May; 77(5):3042-6. PubMed ID: 6156461
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Axonal transport of glycoconjugates in the rat visual system.
    Gammon CM; Goodrum JF; Toews AD; Okabe A; Morell P
    J Neurochem; 1985 Feb; 44(2):376-87. PubMed ID: 2578176
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A difference between the proteins conveyed in the fast component of axonal transport in guinea pig hypoglossal and vagus motor neurons.
    Black MM; Lasek RJ
    J Neurobiol; 1978 Nov; 9(6):433-43. PubMed ID: 84048
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.