BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

711 related articles for article (PubMed ID: 8988608)

  • 1. Energy transfer reactions involving carotenoids: quenching of chlorophyll fluorescence.
    Young AJ; Frank HA
    J Photochem Photobiol B; 1996 Oct; 36(1):3-15. PubMed ID: 8988608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of electron-transfer quenching of chlorophyll fluorescence by carotenoids in non-photochemical quenching of green plants.
    Dreuw A; Fleming GR; Head-Gordon M
    Biochem Soc Trans; 2005 Aug; 33(Pt 4):858-62. PubMed ID: 16042614
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic properties of the minor chlorophyll a/b binding proteins of photosystem II, an in vitro model for photoprotective energy dissipation in the photosynthetic membrane of green plants.
    Ruban AV; Young AJ; Horton P
    Biochemistry; 1996 Jan; 35(3):674-8. PubMed ID: 8547246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Femtosecond transient absorption study of carotenoid to chlorophyll energy transfer in the light-harvesting complex II of photosystem II.
    Connelly JP; Müller MG; Bassi R; Croce R; Holzwarth AR
    Biochemistry; 1997 Jan; 36(2):281-7. PubMed ID: 9003179
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [The current concepts of functional role of carotenoids in the eukaryotic chloroplasts].
    Ladygin VG; Shirshikova GN
    Zh Obshch Biol; 2006; 67(3):163-89. PubMed ID: 16862869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional architecture of the major light-harvesting complex from higher plants.
    Formaggio E; Cinque G; Bassi R
    J Mol Biol; 2001 Dec; 314(5):1157-66. PubMed ID: 11743731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of carotenoids in light-harvesting processes in an antenna protein from the chromophyte Xanthonema debile.
    Durchan M; Tichý J; Litvín R; Šlouf V; Gardian Z; Hříbek P; Vácha F; Polívka T
    J Phys Chem B; 2012 Aug; 116(30):8880-9. PubMed ID: 22764831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carotenoid-dependent oligomerization of the major chlorophyll a/b light harvesting complex of photosystem II of plants.
    Ruban AV; Phillip D; Young AJ; Horton P
    Biochemistry; 1997 Jun; 36(25):7855-9. PubMed ID: 9201929
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-light stress and photoprotection in Umbilicaria antarctica monitored by chlorophyll fluorescence imaging and changes in zeaxanthin and glutathione.
    Barták M; Hájek J; Vráblíková H; Dubová J
    Plant Biol (Stuttg); 2004 May; 6(3):333-41. PubMed ID: 15143442
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The lifetimes and energies of the first excited singlet states of diadinoxanthin and diatoxanthin: the role of these molecules in excess energy dissipation in algae.
    Frank HA; Cua A; Chynwat V; Young A; Gosztola D; Wasielewski MR
    Biochim Biophys Acta; 1996 Dec; 1277(3):243-52. PubMed ID: 8982390
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of the excitation energy utilization in the photosynthetic apparatus of chlorina f2 barley mutant grown under different irradiances.
    Stroch M; Cajánek M; Kalina J; Spunda V
    J Photochem Photobiol B; 2004 Jul; 75(1-2):41-50. PubMed ID: 15246349
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Xanthophylls in light-harvesting complex II of higher plants: light harvesting and triplet quenching.
    Peterman EJ; Gradinaru CC; Calkoen F; Borst JC; van Grondelle R; van Amerongen H
    Biochemistry; 1997 Oct; 36(40):12208-15. PubMed ID: 9315858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of photoinhibition and temperature on carotenoids in sorghum leaves.
    Sharma PK; Hall DO
    Indian J Biochem Biophys; 1996 Dec; 33(6):471-7. PubMed ID: 9219432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photosynthesis, chlorophyll fluorescence, light-harvesting system and photoinhibition resistance of a zeaxanthin-accumulating mutant of Arabidopsis thaliana.
    Tardy F; Havaux M
    J Photochem Photobiol B; 1996 Jun; 34(1):87-94. PubMed ID: 8765663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative analysis of the effects of intrathylakoid pH and xanthophyll cycle pigments on chlorophyll a fluorescence lifetime distributions and intensity in thylakoids.
    Gilmore AM; Shinkarev VP; Hazlett TL; Govindjee G
    Biochemistry; 1998 Sep; 37(39):13582-93. PubMed ID: 9753445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of time-resolved polarization fluorescence spectroscopy in the femtosecond range to photosynthetic systems.
    Akimoto S; Mimuro M
    Photochem Photobiol; 2007; 83(1):163-70. PubMed ID: 16643087
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carotenoid binding sites in LHCIIb. Relative affinities towards major xanthophylls of higher plants.
    Hobe S; Niemeier H; Bender A; Paulsen H
    Eur J Biochem; 2000 Jan; 267(2):616-24. PubMed ID: 10632733
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of nonphotochemical quenching in green plants: energies of the lowest excited singlet states of violaxanthin and zeaxanthin.
    Frank HA; Bautista JA; Josue JS; Young AJ
    Biochemistry; 2000 Mar; 39(11):2831-7. PubMed ID: 10715102
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Singlet energy dissipation in the photosystem II light-harvesting complex does not involve energy transfer to carotenoids.
    Müller MG; Lambrev P; Reus M; Wientjes E; Croce R; Holzwarth AR
    Chemphyschem; 2010 Apr; 11(6):1289-96. PubMed ID: 20127930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel amplification of non-photochemical chlorophyll fluorescence quenching following viral infection in Chlorella.
    Seaton GG; Hurry VM; Rohozinski J
    FEBS Lett; 1996 Jul; 389(3):319-23. PubMed ID: 8766724
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 36.