These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 8989374)
1. Changes in in vivo optical properties and light distributions in normal canine prostate during photodynamic therapy. Chen Q; Wilson BC; Shetty SD; Patterson MS; Cerny JC; Hetzel FW Radiat Res; 1997 Jan; 147(1):86-91. PubMed ID: 8989374 [TBL] [Abstract][Full Text] [Related]
2. In vivo optical properties of normal canine prostate at 732 nm using motexafin lutetium-mediated photodynamic therapy. Zhu TC; Hahn SM; Kapatkin AS; Dimofte A; Rodriguez CE; Vulcan TG; Glatstein E; Hsi RA Photochem Photobiol; 2003 Jan; 77(1):81-8. PubMed ID: 12856887 [TBL] [Abstract][Full Text] [Related]
3. Optical properties of human prostate at 732 nm measured in mediated photodynamic therapy. Zhu TC; Dimofte A; Finlay JC; Stripp D; Busch T; Miles J; Whittington R; Malkowicz SB; Tochner Z; Glatstein E; Hahn SM Photochem Photobiol; 2005; 81(1):96-105. PubMed ID: 15535736 [TBL] [Abstract][Full Text] [Related]
4. Laser dosimetry studies in the prostate. Chen Q; Hetzel FW J Clin Laser Med Surg; 1998 Feb; 16(1):9-12. PubMed ID: 9728124 [TBL] [Abstract][Full Text] [Related]
5. In vivo reflectance measurement of optical properties, blood oxygenation and motexafin lutetium uptake in canine large bowels, kidneys and prostates. Solonenko M; Cheung R; Busch TM; Kachur A; Griffin GM; Vulcan T; Zhu TC; Wang HW; Hahn SM; Yodh AG Phys Med Biol; 2002 Mar; 47(6):857-73. PubMed ID: 11936174 [TBL] [Abstract][Full Text] [Related]
6. Integrating sphere effect in whole bladder wall photodynamic therapy: I. 532 nm versus 630 nm optical irradiation. van Staveren HJ; Beek JF; Ramaekers JW; Keijzer M; Star WM Phys Med Biol; 1994 Jun; 39(6):947-59. PubMed ID: 15551572 [TBL] [Abstract][Full Text] [Related]
7. Optical characteristics of the canine prostate at 665 nm sensitized with tin etiopurpurin dichloride: need for real-time monitoring of photodynamic therapy. Jankun J; Lilge L; Douplik A; Keck RW; Pestka M; Szkudlarek M; Stevens PJ; Lee RJ; Selman SH J Urol; 2004 Aug; 172(2):739-43. PubMed ID: 15247773 [TBL] [Abstract][Full Text] [Related]
8. Preclinical studies in normal canine prostate of a novel palladium-bacteriopheophorbide (WST09) photosensitizer for photodynamic therapy of prostate cancers. Chen Q; Huang Z; Luck D; Beckers J; Brun PH; Wilson BC; Scherz A; Salomon Y; Hetzel FW Photochem Photobiol; 2002 Oct; 76(4):438-45. PubMed ID: 12405153 [TBL] [Abstract][Full Text] [Related]
9. Optical dosimetry for interstitial photodynamic therapy. Arnfield MR; Tulip J; Chetner M; McPhee MS Med Phys; 1989; 16(4):602-8. PubMed ID: 2770633 [TBL] [Abstract][Full Text] [Related]
10. Transperineal in vivo fluence-rate dosimetry in the canine prostate during SnET2-mediated PDT. Lilge L; Pomerleau-Dalcourt N; Douplik A; Selman SH; Keck RW; Szkudlarek M; Pestka M; Jankun J Phys Med Biol; 2004 Jul; 49(14):3209-25. PubMed ID: 15357193 [TBL] [Abstract][Full Text] [Related]
11. Light dosimetry for multiple cylindrical diffusing sources for use in photodynamic therapy. Dickey DJ; Partridge K; Moore RB; Tulip J Phys Med Biol; 2004 Jul; 49(14):3197-208. PubMed ID: 15357192 [TBL] [Abstract][Full Text] [Related]
12. Light dosimetry for intraperitoneal photodynamic therapy in a murine xenograft model of human epithelial ovarian carcinoma. Lilge L; Molpus K; Hasan T; Wilson BC Photochem Photobiol; 1998 Sep; 68(3):281-8. PubMed ID: 9747583 [TBL] [Abstract][Full Text] [Related]
13. Performance of isotropic light dosimetry probes based on scattering bulbs in turbid media. Marijnissen JP; Star WM Phys Med Biol; 2002 Jun; 47(12):2049-58. PubMed ID: 12118600 [TBL] [Abstract][Full Text] [Related]
14. Photodynamic therapy dosimetry in postmortem and in vivo rat tumors and an optical phantom. Arnfield MR; Tulip J; McPhee MS Photochem Photobiol; 1990 Jun; 51(6):667-74. PubMed ID: 2367563 [TBL] [Abstract][Full Text] [Related]
16. Feasibility of interstitial diffuse optical tomography using cylindrical diffusing fibers for prostate PDT. Liang X; Wang KK; Zhu TC Phys Med Biol; 2013 May; 58(10):3461-80. PubMed ID: 23629149 [TBL] [Abstract][Full Text] [Related]
17. Performance of a dedicated light delivery and dosimetry device for photodynamic therapy of nasopharyngeal carcinoma: phantom and volunteer experiments. Nyst HJ; van Veen RL; Tan IB; Peters R; Spaniol S; Robinson DJ; Stewart FA; Levendag PC; Sterenborg HJ Lasers Surg Med; 2007 Sep; 39(8):647-53. PubMed ID: 17886277 [TBL] [Abstract][Full Text] [Related]
18. Determination of fluence rate and temperature distributions in the rat brain; implications for photodynamic therapy. Angell-Petersen E; Hirschberg H; Madsen SJ J Biomed Opt; 2007; 12(1):014003. PubMed ID: 17343478 [TBL] [Abstract][Full Text] [Related]
19. Effects of light beam size on fluence distribution and depth of necrosis in superficially applied photodynamic therapy of normal rat brain. Chen Q; Wilson BC; Dereski MO; Patterson MS; Chopp M; Hetzel FW Photochem Photobiol; 1992 Sep; 56(3):379-84. PubMed ID: 1438573 [TBL] [Abstract][Full Text] [Related]
20. Monte Carlo simulations for EndoBronchial Photodynamic Therapy: the influence of variations in optical and geometrical properties and of realistic and eccentric light sources. Murrer LH; Marijnissen HP; Star WM Lasers Surg Med; 1998; 22(4):193-206. PubMed ID: 9603280 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]