BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

517 related articles for article (PubMed ID: 8989385)

  • 41. Extreme vestibulo-ocular adaptation induced by prolonged optical reversal of vision.
    Gonshor A; Jones GM
    J Physiol; 1976 Apr; 256(2):381-414. PubMed ID: 16992508
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Role of the dorsolateral pontine nucleus in short-term adaptation of the horizontal vestibuloocular reflex.
    Ono S; Das VE; Mustari MJ
    J Neurophysiol; 2003 May; 89(5):2879-85. PubMed ID: 12740419
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Visually induced adaptation in three-dimensional organization of primate vestibuloocular reflex.
    Angelaki DE; Hess BJ
    J Neurophysiol; 1998 Feb; 79(2):791-807. PubMed ID: 9463442
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Context-specific short-term adaptation of the phase of the vestibulo-ocular reflex.
    Kramer PD; Shelhamer M; Peng GC; Zee DS
    Exp Brain Res; 1998 May; 120(2):184-92. PubMed ID: 9629960
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of adaptation to telescopic spectacles on the initial human horizontal vestibuloocular reflex.
    Crane BT; Demer JL
    J Neurophysiol; 2000 Jan; 83(1):38-49. PubMed ID: 10634851
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Flexibility of adaptation of vestibule-ocular reflex in human beings].
    Suzuki K; Watanabe S; Kato Y; Shimada S; Koizuka I
    Nihon Jibiinkoka Gakkai Kaiho; 2006 May; 109(5):461-8. PubMed ID: 16768162
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Violation of superposition by the vestibulo-ocular reflex of the goldfish.
    Dow ER; Anastasio TJ
    Neuroreport; 1996 May; 7(7):1305-9. PubMed ID: 8817555
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Optimal Human Passive Vestibulo-Ocular Reflex Adaptation Does Not Rely on Passive Training.
    Mahfuz MM; Schubert MC; Figtree WVC; Todd CJ; Khan SI; Migliaccio AA
    J Assoc Res Otolaryngol; 2018 Jun; 19(3):261-271. PubMed ID: 29464411
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Angular vestibuloocular reflex responses in Otop1 mice. I. Otolith sensor input is essential for gravity context-specific adaptation.
    Khan SI; Della Santina CC; Migliaccio AA
    J Neurophysiol; 2019 Jun; 121(6):2291-2299. PubMed ID: 30969887
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Three-dimensional organization of otolith-ocular reflexes in rhesus monkeys. II. Inertial detection of angular velocity.
    Angelaki DE; Hess BJ
    J Neurophysiol; 1996 Jun; 75(6):2425-40. PubMed ID: 8793754
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The dynamics of the vestibulo-ocular reflex after peripheral vestibular damage. I. Frequency-dependent asymmetry.
    Broussard DM; Bhatia JK; Jones GE
    Exp Brain Res; 1999 Apr; 125(3):353-64. PubMed ID: 10229026
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Gravity-dependent and gravity-independent gain changes during vertical vestibulo-ocular reflex (VOR) adaptation.
    Xiang Y; Raphan T; Cohen B; Yakushin SB
    J Gravit Physiol; 2004 Jul; 11(2):P9-12. PubMed ID: 16231429
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Comparison of plasticity and development of mouse optokinetic and vestibulo-ocular reflexes suggests differential gain control mechanisms.
    Faulstich BM; Onori KA; du Lac S
    Vision Res; 2004 Dec; 44(28):3419-27. PubMed ID: 15536010
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Torsional and horizontal vestibular ocular reflex adaptation: three-dimensional eye movement analysis.
    Solomon D; Zee DS; Straumann D
    Exp Brain Res; 2003 Sep; 152(2):150-5. PubMed ID: 12879182
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effect of a differential training paradigm with varying frequencies and amplitudes on adaptation of vestibulo-ocular reflex in mice.
    Pham NC; Kim YG; Kim SJ; Kim CH
    Exp Brain Res; 2023 May; 241(5):1299-1308. PubMed ID: 37000203
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Visually-induced adaptive plasticity in the human vestibulo-ocular reflex.
    Paige GD; Sargent EW
    Exp Brain Res; 1991; 84(1):25-34. PubMed ID: 1855562
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Dorsal Y group in the squirrel monkey. II. Contribution of the cerebellar flocculus to neuronal responses in normal and adapted animals.
    Partsalis AM; Zhang Y; Highstein SM
    J Neurophysiol; 1995 Feb; 73(2):632-50. PubMed ID: 7760123
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Adaptation of the vertical vestibulo-ocular reflex in cats during low-frequency vertical rotation.
    Fushiki H; Maruyama M; Shojaku H
    Auris Nasus Larynx; 2018 Apr; 45(2):242-247. PubMed ID: 28457586
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Adaptations and deficits in the vestibulo-ocular reflex after sixth nerve palsy.
    Wong AM; Tweed D; Sharpe JA
    Invest Ophthalmol Vis Sci; 2002 Jan; 43(1):99-111. PubMed ID: 11773019
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Velocity-selective adaptation of the horizontal and cross-axis vestibulo-ocular reflex in the mouse.
    Hübner PP; Khan SI; Migliaccio AA
    Exp Brain Res; 2014 Oct; 232(10):3035-46. PubMed ID: 24862508
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.