BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 8989521)

  • 1. Agrin accumulates in the brain microvascular basal lamina during development of the blood-brain barrier.
    Barber AJ; Lieth E
    Dev Dyn; 1997 Jan; 208(1):62-74. PubMed ID: 8989521
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extracellular matrix and the blood-brain barrier in glioblastoma multiforme: spatial segregation of tenascin and agrin.
    Rascher G; Fischmann A; Kröger S; Duffner F; Grote EH; Wolburg H
    Acta Neuropathol; 2002 Jul; 104(1):85-91. PubMed ID: 12070669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Post-ischemic hypothermia attenuates loss of the vascular basement membrane proteins, agrin and SPARC, and the blood-brain barrier disruption after global cerebral ischemia.
    Baumann E; Preston E; Slinn J; Stanimirovic D
    Brain Res; 2009 May; 1269():185-97. PubMed ID: 19285050
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aggregates of acetylcholine receptors are not observed under anti-agrin staining schwann cell processes at the frog neuromuscular junction.
    Werle MJ; Jones MA; Stanco AM
    J Neurobiol; 1999 Jul; 40(1):45-54. PubMed ID: 10398070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synapse formation and agrin expression in stratospheroid cultures from embryonic chick retina.
    Hering H; Kröger S
    Dev Biol; 1999 Oct; 214(2):412-28. PubMed ID: 10525344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Selective deposition of agrin in the microvasculature of hepatocellular carcinoma: aspects in pathogenesis and differential diagnosis].
    Tátrai P
    Magy Onkol; 2008 Dec; 52(4):379-83. PubMed ID: 19068466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Matrix metalloproteinase-3 removes agrin from synaptic basal lamina.
    VanSaun M; Werle MJ
    J Neurobiol; 2000 May; 43(2):140-9. PubMed ID: 10770843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of microvascular basal lamina damage and blood-brain barrier dysfunction following subarachnoid hemorrhage in rats.
    Schöller K; Trinkl A; Klopotowski M; Thal SC; Plesnila N; Trabold R; Hamann GF; Schmid-Elsaesser R; Zausinger S
    Brain Res; 2007 Apr; 1142():237-46. PubMed ID: 17303089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overexpression of agrin isoforms in Xenopus embryos alters the distribution of synaptic acetylcholine receptors during development of the neuromuscular junction.
    Godfrey EW; Roe J; Heathcote RD
    Dev Biol; 1999 Jan; 205(1):22-32. PubMed ID: 9882495
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pre-ischemic exercise reduces matrix metalloproteinase-9 expression and ameliorates blood-brain barrier dysfunction in stroke.
    Guo M; Cox B; Mahale S; Davis W; Carranza A; Hayes K; Sprague S; Jimenez D; Ding Y
    Neuroscience; 2008 Jan; 151(2):340-51. PubMed ID: 18160227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Agrin, aquaporin-4, and astrocyte polarity as an important feature of the blood-brain barrier.
    Wolburg H; Noell S; Wolburg-Buchholz K; Mack A; Fallier-Becker P
    Neuroscientist; 2009 Apr; 15(2):180-93. PubMed ID: 19307424
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential distribution of agrin isoforms in the developing and adult avian retina.
    Kröger S
    Mol Cell Neurosci; 1997; 10(3-4):149-61. PubMed ID: 9532577
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An alternative amino-terminus expressed in the central nervous system converts agrin to a type II transmembrane protein.
    Neumann FR; Bittcher G; Annies M; Schumacher B; Kröger S; Ruegg MA
    Mol Cell Neurosci; 2001 Jan; 17(1):208-25. PubMed ID: 11161480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of basal lamina protein mRNAs in the early embryonic chick eye.
    Dong S; Landfair J; Balasubramani M; Bier ME; Cole G; Halfter W
    J Comp Neurol; 2002 Jun; 447(3):261-73. PubMed ID: 11984820
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Changes in the subendothelial compartment during the maturation process of cerebral microvessels].
    Bertossi M; Ribatti D; Mancini L; Virgintino D; Nico B; Quondamatteo F; Marzullo A; Roncali L
    Boll Soc Ital Biol Sper; 1991 Feb; 67(2):159-66. PubMed ID: 1888482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Critical role of microvasculature basal lamina in ischemic brain injury.
    Wang CX; Shuaib A
    Prog Neurobiol; 2007 Oct; 83(3):140-8. PubMed ID: 17868971
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acutely increased cyclophilin a expression after brain injury: a role in blood-brain barrier function and tissue preservation.
    Redell JB; Zhao J; Dash PK
    J Neurosci Res; 2007 Jul; 85(9):1980-8. PubMed ID: 17461417
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Agrin inhibits neurite outgrowth but promotes attachment of embryonic motor and sensory neurons.
    Chang D; Woo JS; Campanelli J; Scheller RH; Ignatius MJ
    Dev Biol; 1997 Jan; 181(1):21-35. PubMed ID: 9015262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lack of blood-brain barrier properties in microvessels of the prelaminar optic nerve head.
    Hofman P; Hoyng P; vanderWerf F; Vrensen GF; Schlingemann RO
    Invest Ophthalmol Vis Sci; 2001 Apr; 42(5):895-901. PubMed ID: 11274064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Redistribution of aquaporin-4 in human glioblastoma correlates with loss of agrin immunoreactivity from brain capillary basal laminae.
    Warth A; Kröger S; Wolburg H
    Acta Neuropathol; 2004 Apr; 107(4):311-8. PubMed ID: 14735305
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.