These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 8990114)

  • 1. Biological activation of hydrogen.
    Happe RP; Roseboom W; Pierik AJ; Albracht SP; Bagley KA
    Nature; 1997 Jan; 385(6612):126. PubMed ID: 8990114
    [No Abstract]   [Full Text] [Related]  

  • 2. Water splitting goes au naturel.
    Alper J
    Science; 2003 Mar; 299(5613):1686-7. PubMed ID: 12637732
    [No Abstract]   [Full Text] [Related]  

  • 3. The crystal structure of [Fe]-hydrogenase reveals the geometry of the active site.
    Shima S; Pilak O; Vogt S; Schick M; Stagni MS; Meyer-Klaucke W; Warkentin E; Thauer RK; Ermler U
    Science; 2008 Jul; 321(5888):572-5. PubMed ID: 18653896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Revealing the absolute configuration of the CO and CN- ligands at the active site of a [NiFe] hydrogenase.
    Rippers Y; Horch M; Hildebrandt P; Zebger I; Mroginski MA
    Chemphyschem; 2012 Dec; 13(17):3852-6. PubMed ID: 22945586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomic partitioning of M-H2 bonds in [NiFe] hydrogenase--a test case of concurrent binding.
    Vedha SA; Solomon RV; Venuvanalingam P
    Phys Chem Chem Phys; 2014 Jun; 16(22):10698-707. PubMed ID: 24756140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational studies of [NiFe] and [FeFe] hydrogenases.
    Siegbahn PE; Tye JW; Hall MB
    Chem Rev; 2007 Oct; 107(10):4414-35. PubMed ID: 17927160
    [No Abstract]   [Full Text] [Related]  

  • 7. Chemistry. A promising mimic of hydrogenase activity.
    Rauchfuss TB
    Science; 2007 Apr; 316(5824):553-4. PubMed ID: 17463276
    [No Abstract]   [Full Text] [Related]  

  • 8. [Ni(xbsms)Ru(CO)2Cl2]: a bioinspired nickel-ruthenium functional model of [NiFe] hydrogenase.
    Oudart Y; Artero V; Pécaut J; Fontecave M
    Inorg Chem; 2006 May; 45(11):4334-6. PubMed ID: 16711679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biological hydrogen production: not so elementary.
    Adams MW; Stiefel EI
    Science; 1998 Dec; 282(5395):1842-3. PubMed ID: 9874636
    [No Abstract]   [Full Text] [Related]  

  • 10. Catalytic electron transport in Chromatium vinosum [NiFe]-hydrogenase: application of voltammetry in detecting redox-active centers and establishing that hydrogen oxidation is very fast even at potentials close to the reversible H+/H2 value.
    Pershad HR; Duff JL; Heering HA; Duin EC; Albracht SP; Armstrong FA
    Biochemistry; 1999 Jul; 38(28):8992-9. PubMed ID: 10413472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biochemistry. A natural choice for activating hydrogen.
    Armstrong FA; Fontecilla-Camps JC
    Science; 2008 Jul; 321(5888):498-9. PubMed ID: 18653870
    [No Abstract]   [Full Text] [Related]  

  • 12. The di-iron subsite of all-iron hydrogenase: mechanism of cyanation of a synthetic [2Fe3S]-carbonyl assembly.
    George S; Cui Z; Razavet M; Pickett CJ
    Chemistry; 2002 Sep; 8(17):4037-46. PubMed ID: 12360945
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pre-steady-state kinetics of the reactions of [NiFe]-hydrogenase from Chromatium vinosum with H2 and CO.
    Happe RP; Roseboom W; Albracht SP
    Eur J Biochem; 1999 Feb; 259(3):602-8. PubMed ID: 10092843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of cyanide on the carbonylation of iron(II): synthesis of Fe-Sr-Cn-Co centers related to the hydrogenase active sites.
    Rauchfuss TB; Contakes SM; Hsu SC; Reynolds MA; Wilson SR
    J Am Chem Soc; 2001 Jul; 123(28):6933-4. PubMed ID: 11448203
    [No Abstract]   [Full Text] [Related]  

  • 15. Carbon monoxide as an intrinsic ligand to iron in the active site of the iron-sulfur-cluster-free hydrogenase H2-forming methylenetetrahydromethanopterin dehydrogenase as revealed by infrared spectroscopy.
    Lyon EJ; Shima S; Boecher R; Thauer RK; Grevels FW; Bill E; Roseboom W; Albracht SP
    J Am Chem Soc; 2004 Nov; 126(43):14239-48. PubMed ID: 15506791
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of [(L)Ni(mu2-S)x{Fe(CO)3}x] adducts (x = 1 or 2): analogues of the active site of [NiFe] hydrogenase.
    Stenson PA; Marin-Becerra A; Wilson C; Blake AJ; McMaster J; Schröder M
    Chem Commun (Camb); 2006 Jan; (3):317-9. PubMed ID: 16391746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The mechanism of activation of a [NiFe]-hydrogenase by electrons, hydrogen, and carbon monoxide.
    Lamle SE; Albracht SP; Armstrong FA
    J Am Chem Soc; 2005 May; 127(18):6595-604. PubMed ID: 15869280
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlling carbon monoxide binding at di-iron units related to the iron-only hydrogenase sub-site.
    Xu F; Tard C; Wang X; Ibrahim SK; Hughes DL; Zhong W; Zeng X; Luo Q; Liu X; Pickett CJ
    Chem Commun (Camb); 2008 Feb; (5):606-8. PubMed ID: 18209804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the redox equilibrium between H2 and hydrogenase.
    Coremans JM; van Garderen CJ; Albracht SP
    Biochim Biophys Acta; 1992 Feb; 1119(2):148-56. PubMed ID: 1311607
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resolving the CO/CN ligand arrangement in CO-inactivated [FeFe] hydrogenase by first principles density functional theory calculations.
    Zilberman S; Stiefel EI; Cohen MH; Car R
    Inorg Chem; 2006 Jul; 45(15):5715-7. PubMed ID: 16841968
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.