These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
37 related articles for article (PubMed ID: 8990264)
1. Mutagenesis of beta-V198 in the F1-ATPase of yeast Saccharomyces cerevisiae and its role in binding nucleotide. Sosa-Peinado A; Mueller DM Arch Biochem Biophys; 1997 Jan; 337(1):27-33. PubMed ID: 8990264 [TBL] [Abstract][Full Text] [Related]
2. Mutations in the nucleotide binding domain of the alpha subunits of the F1-ATPase from thermophilic Bacillus PS3 that affect cross-talk between nucleotide binding sites. Grodsky NB; Dou C; Allison WS Biochemistry; 1998 Jan; 37(4):1007-14. PubMed ID: 9454591 [TBL] [Abstract][Full Text] [Related]
3. Site-directed mutagenesis of the yeast V-ATPase B subunit (Vma2p). Liu Q; Kane PM; Newman PR; Forgac M J Biol Chem; 1996 Jan; 271(4):2018-22. PubMed ID: 8567653 [TBL] [Abstract][Full Text] [Related]
5. The adenine pocket of a single catalytic site is derivatized when the bovine heart mitochondrial F1-ATPase is photoinactivated with 4-amino-1-octylquinaldinium. Grodsky NB; Allison WS Cell Biochem Biophys; 1999; 31(3):285-94. PubMed ID: 10736751 [TBL] [Abstract][Full Text] [Related]
6. Catalytic and structural importance of Gly-454, Tyr-455, and Leu-456 in the carboxy-terminal region of Escherichia coli F1-ATPase alpha subunit. Yabuki M; Nagakura T; Moritani C; Kanazawa H Arch Biochem Biophys; 1997 Feb; 338(1):104-10. PubMed ID: 9015394 [TBL] [Abstract][Full Text] [Related]
7. The role of beta-Arg-182, an essential catalytic site residue in Escherichia coli F1-ATPase. Nadanaciva S; Weber J; Senior AE Biochemistry; 1999 Jun; 38(24):7670-7. PubMed ID: 10387006 [TBL] [Abstract][Full Text] [Related]
8. Mutations within the C-terminus of the gamma subunit of the photosynthetic F1-ATPase activate MgATP hydrolysis and attenuate the stimulatory oxyanion effect. He F; Samra HS; Tucker WC; Mayans DR; Hoang E; Gromet-Elhanan Z; Berrie CL; Richter ML Biochemistry; 2007 Mar; 46(9):2411-8. PubMed ID: 17288458 [TBL] [Abstract][Full Text] [Related]
9. Primary structural constraints of P-loop of mitochondrial F1-ATPase from yeast. Shen H; Yao BY; Mueller DM J Biol Chem; 1994 Apr; 269(13):9424-8. PubMed ID: 8144526 [TBL] [Abstract][Full Text] [Related]
10. Effects of oligomycins on adenosine triphosphatase activity of mitochondria isolated from the yeasts Saccharomyces cerevisiae and Schwanniomyces castellii. Charton C; Ulaszewski S; da Silva Vieira MR; Henoux V; Claisse ML Biochem Biophys Res Commun; 2004 May; 318(1):67-72. PubMed ID: 15110754 [TBL] [Abstract][Full Text] [Related]
11. The alpha 3(beta Y341W)3 gamma subcomplex of the F1-ATPase from the thermophilic Bacillus PS3 fails to dissociate ADP when MgATP is hydrolyzed at a single catalytic site and attains maximal velocity when three catalytic sites are saturated with MgATP. Dou C; Fortes PA; Allison WS Biochemistry; 1998 Nov; 37(47):16757-64. PubMed ID: 9843446 [TBL] [Abstract][Full Text] [Related]
12. Tryptophan substitutions surrounding the nucleotide in catalytic sites of F1-ATPase. Weber J; Wilke-Mounts S; Hammond ST; Senior AE Biochemistry; 1998 Sep; 37(35):12042-50. PubMed ID: 9724515 [TBL] [Abstract][Full Text] [Related]
13. Intragenic suppressors of P-loop mutations in the beta-subunit of the mitochondrial ATPase in the yeast Saccharomyces cerevisiae. Shen H; Sosa-Peinado A; Mueller DM J Biol Chem; 1996 May; 271(20):11844-51. PubMed ID: 8662632 [TBL] [Abstract][Full Text] [Related]
14. Site-directed mutagenesis of the sodium pump: analysis of mutations to amino acids in the proposed nucleotide binding site by stable oxygen isotope exchange. Farley RA; Heart E; Kabalin M; Putnam D; Wang K; Kasho VN; Faller LD Biochemistry; 1997 Jan; 36(4):941-51. PubMed ID: 9020794 [TBL] [Abstract][Full Text] [Related]
15. Molecular dissection of the C-terminal regulatory domain of the plant plasma membrane H+-ATPase AHA2: mapping of residues that when altered give rise to an activated enzyme. Axelsen KB; Venema K; Jahn T; Baunsgaard L; Palmgren MG Biochemistry; 1999 Jun; 38(22):7227-34. PubMed ID: 10353834 [TBL] [Abstract][Full Text] [Related]
16. Structure/function of the beta-barrel domain of F1-ATPase in the yeast Saccharomyces cerevisiae. Bakhtiari N; Lai-Zhang J; Yao B; Mueller DM J Biol Chem; 1999 Jun; 274(23):16363-9. PubMed ID: 10347195 [TBL] [Abstract][Full Text] [Related]
17. Organellar H(+)-ATPase--site directed mutagenesis and suppressor mutants. Perzov N; Spekova L; Supek F; Nelson H; Nelson N Acta Physiol Scand Suppl; 1998 Aug; 643():185-94. PubMed ID: 9789560 [TBL] [Abstract][Full Text] [Related]
18. Insight into the bind-lock mechanism of the yeast mitochondrial ATP synthase inhibitory peptide. Corvest V; Sigalat C; Haraux F Biochemistry; 2007 Jul; 46(29):8680-8. PubMed ID: 17595113 [TBL] [Abstract][Full Text] [Related]
19. Yeast sterol C24-methyltransferase: role of highly conserved tyrosine-81 in catalytic competence studied by site-directed mutagenesis and thermodynamic analysis. Nes WD; Jayasimha P; Song Z Arch Biochem Biophys; 2008 Sep; 477(2):313-23. PubMed ID: 18555004 [TBL] [Abstract][Full Text] [Related]
20. Mitochondrial ATP synthase residue betaarginine-408, which interacts with the inhibitory site of regulatory protein IF1, is essential for the function of the enzyme. Ichikawa N; Chisuwa N; Tanase M; Nakamura M J Biochem; 2005 Aug; 138(2):201-7. PubMed ID: 16091595 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]