These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 8990523)

  • 1. Classification of species in the genus Penicillium by Curie point pyrolysis/mass spectrometry followed by multivariate analysis and artificial neural networks.
    Nilsson T; Bassani MR; Larsen TO; Montanarella L
    J Mass Spectrom; 1996 Dec; 31(12):1422-8. PubMed ID: 8990523
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differentiation of closely related fungi by electronic nose analysis.
    Karlshøj K; Nielsen PV; Larsen TO
    J Food Sci; 2007 Aug; 72(6):M187-92. PubMed ID: 17995685
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microsatellite loci to recognize species for the cheese starter and contaminating strains associated with cheese manufacturing.
    Giraud F; Giraud T; Aguileta G; Fournier E; Samson R; Cruaud C; Lacoste S; Ropars J; Tellier A; Dupont J
    Int J Food Microbiol; 2010 Feb; 137(2-3):204-13. PubMed ID: 20031244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mass spectrometry-based chemotaxonomic classification of Penicillium species (P. echinulatum, P. expansum, P. solitum, and P. oxalicum) and its correlation with antioxidant activity.
    Kim HY; Park HM; Lee CH
    J Microbiol Methods; 2012 Sep; 90(3):327-35. PubMed ID: 22732319
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid phenotypic characterization of Salmonella enterica strains by pyrolysis metastable atom bombardment mass spectrometry with multivariate statistical and artificial neural network pattern recognition.
    Wilkes JG; Rushing L; Nayak R; Buzatu DA; Sutherland JB
    J Microbiol Methods; 2005 Jun; 61(3):321-34. PubMed ID: 15767008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbial quality and presence of moulds in Kuflu cheese.
    Hayaloglu AA; Kirbag S
    Int J Food Microbiol; 2007 Apr; 115(3):376-80. PubMed ID: 17258341
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differentiation of species from the Penicillium roqueforti group by volatile metabolite profiling.
    Karlshøj K; Larsen TO
    J Agric Food Chem; 2005 Feb; 53(3):708-15. PubMed ID: 15686424
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a semisynthetic cheese medium for fungi using chemometric methods.
    Hansen BV; Nielsen PV
    J Dairy Sci; 1997 Jul; 80(7):1237-45. PubMed ID: 9241586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of intact Penicillium spores by matrix-assisted laser desorption/ionization mass spectrometry.
    Chen HY; Chen YC
    Rapid Commun Mass Spectrom; 2005; 19(23):3564-8. PubMed ID: 16276495
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Near-infrared spectra of Penicillium camemberti strains separated by extended multiplicative signal correction improved prediction of physical and chemical variations.
    Decker M; Nielsen PV; Martens H
    Appl Spectrosc; 2005 Jan; 59(1):56-68. PubMed ID: 15720739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Moulds contaminants on Norwegian dry-cured meat products.
    Asefa DT; Gjerde RO; Sidhu MS; Langsrud S; Kure CF; Nesbakken T; Skaar I
    Int J Food Microbiol; 2009 Jan; 128(3):435-9. PubMed ID: 19000642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mycobiota in the processing areas of two different meat products.
    Sørensen LM; Jacobsen T; Nielsen PV; Frisvad JC; Koch AG
    Int J Food Microbiol; 2008 May; 124(1):58-64. PubMed ID: 18367279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of unsupervised and supervised artificial neural networks for the identification of lactic acid bacteria on the basis of SDS-PAGE patterns of whole cell proteins.
    Piraino P; Ricciardi A; Salzano G; Zotta T; Parente E
    J Microbiol Methods; 2006 Aug; 66(2):336-46. PubMed ID: 16480784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of cheese-associated fungi using selected ion monitoring of volatile terpenes.
    Larsen TO
    Lett Appl Microbiol; 1997 Jun; 24(6):463-6. PubMed ID: 9296587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mould contamination in production of semi-hard cheese.
    Kure CF; Skaar I; Brendehaug J
    Int J Food Microbiol; 2004 May; 93(1):41-9. PubMed ID: 15135581
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid identification using pyrolysis mass spectrometry and artificial neural networks of Propionibacterium acnes isolated from dogs.
    Goodacre R; Neal MJ; Kell DB; Greenham LW; Noble WC; Harvey RG
    J Appl Bacteriol; 1994 Feb; 76(2):124-34. PubMed ID: 8144414
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mould growth on the Norwegian semi-hard cheeses Norvegia and Jarlsberg.
    Kure CF; Skaar I
    Int J Food Microbiol; 2000 Dec; 62(1-2):133-7. PubMed ID: 11139013
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The inhibitory effect of Penicillium camemberti and Geotruchum candidum on the associated funga of white mould cheese.
    Decker M; Nielsen PV
    Int J Food Microbiol; 2005 Sep; 104(1):51-60. PubMed ID: 16083983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A method for comparison of growth media in objective identification of Penicillium based on multi-spectral imaging.
    Clemmensen LH; Hansen ME; Frisvad JC; Ersbøll BK
    J Microbiol Methods; 2007 May; 69(2):249-55. PubMed ID: 17350123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro effects of water activity, temperature and solutes on the growth rate of P. italicum Wehmer and P. digitatum Sacc.
    Lahlali R; Serrhini MN; Friel D; Jijakli MH
    J Appl Microbiol; 2006 Sep; 101(3):628-36. PubMed ID: 16907813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.