These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
527 related articles for article (PubMed ID: 8991480)
1. Evaluation of the effect of three surface treatments on the biocompatibility of 316L stainless steel using human differentiated cells. Bordji K; Jouzeau JY; Mainard D; Payan E; Delagoutte JP; Netter P Biomaterials; 1996 Mar; 17(5):491-500. PubMed ID: 8991480 [TBL] [Abstract][Full Text] [Related]
2. Effects of Ti-C:H coating and plasma nitriding treatment on tribological, electrochemical, and biocompatibility properties of AISI 316L. Kao WH; Su YL; Horng JH; Zhang KX J Biomater Appl; 2016 Aug; 31(2):215-29. PubMed ID: 27422714 [TBL] [Abstract][Full Text] [Related]
3. Cultures and co-cultures of human blood mononuclear cells and endothelial cells for the biocompatibility assessment of surface modified AISI 316L austenitic stainless steel. Stio M; Martinesi M; Treves C; Borgioli F Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():1081-91. PubMed ID: 27612806 [TBL] [Abstract][Full Text] [Related]
4. In vitro corrosion behavior of bioceramic, metallic, and bioceramic-metallic coated stainless steel dental implants. Fathi MH; Salehi M; Saatchi A; Mortazavi V; Moosavi SB Dent Mater; 2003 May; 19(3):188-98. PubMed ID: 12628430 [TBL] [Abstract][Full Text] [Related]
5. Improved tribological properties, electrochemical resistance and biocompatibility of AISI 316L stainless steel through duplex plasma nitriding and TiN coating treatment. Kao WH; Su YL; Horng JH; Hsieh YT J Biomater Appl; 2017 Jul; 32(1):12-27. PubMed ID: 28541124 [TBL] [Abstract][Full Text] [Related]
6. In vitro response of human peripheral blood mononuclear cells to AISI 316L austenitic stainless steel subjected to nitriding and collagen coating treatments. Stio M; Martinesi M; Treves C; Borgioli F J Mater Sci Mater Med; 2015 Feb; 26(2):100. PubMed ID: 25655502 [TBL] [Abstract][Full Text] [Related]
7. Cytocompatibility of Ti-6Al-4V and Ti-5Al-2.5Fe alloys according to three surface treatments, using human fibroblasts and osteoblasts. Bordji K; Jouzeau JY; Mainard D; Payan E; Netter P; Rie KT; Stucky T; Hage-Ali M Biomaterials; 1996 May; 17(9):929-40. PubMed ID: 8718939 [TBL] [Abstract][Full Text] [Related]
9. In vitro corrosion resistance of plasma source ion nitrided austenitic stainless steels. Le MK; Zhu XM Biomaterials; 2001 Apr; 22(7):641-7. PubMed ID: 11246957 [TBL] [Abstract][Full Text] [Related]
10. P2000 - A high-nitrogen austenitic steel for application in bone surgery. Becerikli M; Jaurich H; Wallner C; Wagner JM; Dadras M; Jettkant B; Pöhl F; Seifert M; Jung O; Mitevski B; Karkar A; Lehnhardt M; Fischer A; Kauther MD; Behr B PLoS One; 2019; 14(3):e0214384. PubMed ID: 30913254 [TBL] [Abstract][Full Text] [Related]
11. Effect of boron addition on injection molded 316L stainless steel: mechanical, corrosion properties and in vitro bioactivity. Bayraktaroglu E; Gulsoy HO; Gulsoy N; Er O; Kilic H Biomed Mater Eng; 2012; 22(6):333-49. PubMed ID: 23114463 [TBL] [Abstract][Full Text] [Related]
12. Electron Backscatter Diffraction and Transmission Kikuchi Diffraction Analysis of an Austenitic Stainless Steel Subjected to Surface Mechanical Attrition Treatment and Plasma Nitriding. Proust G; Retraint D; Chemkhi M; Roos A; Demangel C Microsc Microanal; 2015 Aug; 21(4):919-26. PubMed ID: 26139391 [TBL] [Abstract][Full Text] [Related]
13. Surface mechanical properties, corrosion resistance, and cytocompatibility of nitrogen plasma-implanted nickel-titanium alloys: a comparative study with commonly used medical grade materials. Yeung KW; Poon RW; Chu PK; Chung CY; Liu XY; Lu WW; Chan D; Chan SC; Luk KD; Cheung KM J Biomed Mater Res A; 2007 Aug; 82(2):403-14. PubMed ID: 17295246 [TBL] [Abstract][Full Text] [Related]
14. Tailoring Surface Hydrophilicity Property for Biomedical 316L and 304 Stainless Steels: A Special Perspective on Studying Osteoconductivity and Biocompatibility. Peng C; Izawa T; Zhu L; Kuroda K; Okido M ACS Appl Mater Interfaces; 2019 Dec; 11(49):45489-45497. PubMed ID: 31714730 [TBL] [Abstract][Full Text] [Related]
15. Mechanical properties and biocompatibility of plasma-nitrided laser-cut 316L cardiovascular stents. Arslan E; Iğdil MC; Yazici H; Tamerler C; Bermek H; Trabzon L J Mater Sci Mater Med; 2008 May; 19(5):2079-86. PubMed ID: 17968502 [TBL] [Abstract][Full Text] [Related]
16. Effect of stainless steel corrosion products on in vitro biomineralization. Fernandes MH J Biomater Appl; 1999 Oct; 14(2):113-68. PubMed ID: 10549002 [TBL] [Abstract][Full Text] [Related]
17. Biocompatibility studies of low temperature nitrided and collagen-I coated AISI 316L austenitic stainless steel. Martinesi M; Stio M; Treves C; Borgioli F J Mater Sci Mater Med; 2013 Jun; 24(6):1501-13. PubMed ID: 23471501 [TBL] [Abstract][Full Text] [Related]
18. Biocompatibility evaluation of surface-treated AISI 316L austenitic stainless steel in human cell cultures. Martinesi M; Bruni S; Stio M; Treves C; Bacci T; Borgioli F J Biomed Mater Res A; 2007 Jan; 80(1):131-45. PubMed ID: 16983653 [TBL] [Abstract][Full Text] [Related]
19. Effect of Zr, Nb and Ti addition on injection molded 316L stainless steel for bio-applications: Mechanical, electrochemical and biocompatibility properties. Gulsoy HO; Pazarlioglu S; Gulsoy N; Gundede B; Mutlu O J Mech Behav Biomed Mater; 2015 Nov; 51():215-24. PubMed ID: 26275484 [TBL] [Abstract][Full Text] [Related]
20. Laser surface modification of 316L stainless steel. Balla VK; Dey S; Muthuchamy AA; Janaki Ram GD; Das M; Bandyopadhyay A J Biomed Mater Res B Appl Biomater; 2018 Feb; 106(2):569-577. PubMed ID: 28245086 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]