These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 8991482)

  • 1. New aspects of the effect of size and size distribution on the setting parameters and mechanical properties of acrylic bone cements.
    Pascual B; Vázquez B; Gurruchaga M; Goñi I; Ginebra MP; Gil FJ; Planell JA; Levenfeld B; San Román J
    Biomaterials; 1996 Mar; 17(5):509-16. PubMed ID: 8991482
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of new acrylic bone cements prepared with oleic acid derivatives.
    Vázquez B; Deb S; Bonfield W; Román JS
    J Biomed Mater Res; 2002; 63(2):88-97. PubMed ID: 11870640
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of tertiary amines with reduced toxicity to the curing process of acrylic bone cements.
    Vazquez B; Elvira C; Levenfeld B; Pascual B; Goñi I; Gurruchaga M; Ginebra MP; Gil FX; Planell JA; Liso PA; Rebuelta M; San Román J
    J Biomed Mater Res; 1997 Jan; 34(1):129-36. PubMed ID: 8978662
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel high-viscosity, two-solution acrylic bone cement: effect of chemical composition on properties.
    Hasenwinkel JM; Lautenschlager EP; Wixson RL; Gilbert JL
    J Biomed Mater Res; 1999 Oct; 47(1):36-45. PubMed ID: 10400878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of initiation chemistry on the fracture toughness, fatigue strength, and residual monomer content of a novel high-viscosity, two-solution acrylic bone cement.
    Hasenwinkel JM; Lautenschlager EP; Wixson RL; Gilbert JL
    J Biomed Mater Res; 2002 Mar; 59(3):411-21. PubMed ID: 11774298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of long chain amine activator in conventional acrylic bone cement.
    Vazquez B; San Roman J; Deb S; Bonfield W
    J Biomed Mater Res; 1998; 43(2):131-9. PubMed ID: 9619431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Factors influencing the creep behavior of poly(methyl methacrylate) cements.
    Treharne RW; Brown N
    J Biomed Mater Res; 1975 Jul; 9(4):81-88. PubMed ID: 1176512
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-reinforced composite poly(methyl methacrylate): static and fatigue properties.
    Gilbert JL; Ney DS; Lautenschlager EP
    Biomaterials; 1995 Sep; 16(14):1043-55. PubMed ID: 8519925
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The development of theoretical relationships between some handling parameters (setting time and setting temperature), composition (relative amounts of initiator and activator) and ambient temperature for acrylic bone cement.
    Milner R
    J Biomed Mater Res B Appl Biomater; 2004 Feb; 68(2):180-5. PubMed ID: 14737766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of the activator in an acrylic bone cement on an array of cement properties.
    Lewis G; Xu J; Deb S; Lasa BV; Román JS
    J Biomed Mater Res A; 2007 Jun; 81(3):544-53. PubMed ID: 17133450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical properties of acrylic bone cement containing PMMA-SiO2 hybrid sol-gel material.
    Yang JM; Lu CS; Hsu YG; Shih CH
    J Biomed Mater Res; 1997; 38(2):143-54. PubMed ID: 9178742
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acrylic bone cements modified with beta-TCP particles encapsulated with poly(ethylene glycol).
    Vázquez B; Ginebra MP; Gil X; Planell JA; San Román J
    Biomaterials; 2005 Jul; 26(20):4309-16. PubMed ID: 15683655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rheological properties of acrylic bone cement during curing and the role of the size of the powder particles.
    Lewis G; Carroll M
    J Biomed Mater Res; 2002; 63(2):191-9. PubMed ID: 11870653
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ESR study of MMA polymerization by a peroxide/amine system: bone cement formation.
    Oldfield FF; Yasuda HK
    J Biomed Mater Res; 1999 Mar; 44(4):436-45. PubMed ID: 10397948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graft copolymers of methyl methacrylate and poly([R]-3-hydroxybutyrate) macromonomers as candidates for inclusion in acrylic bone cement formulations: Compression testing.
    Nguyen S; Marchessault RH
    J Biomed Mater Res B Appl Biomater; 2006 Apr; 77(1):5-12. PubMed ID: 16206205
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PMMA-based composite materials with reactive ceramic fillers: IV. Radiopacifying particles embedded in PMMA beads for acrylic bone cements.
    Abboud M; Casaubieilh L; Morvan F; Fontanille M; Duguet E
    J Biomed Mater Res; 2000; 53(6):728-36. PubMed ID: 11074433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of BaSO4 on the fatigue crack propagation rate of PMMA bone cement.
    Molino LN; Topoleski LD
    J Biomed Mater Res; 1996 May; 31(1):131-7. PubMed ID: 8731157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of the in vitro biocompatibility of PMMA/high-load HA/carbon nanostructures bone cement formulations.
    Gonçalves G; Portolés MT; Ramírez-Santillán C; Vallet-Regí M; Serro AP; Grácio J; Marques PA
    J Mater Sci Mater Med; 2013 Dec; 24(12):2787-96. PubMed ID: 23963685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Innovations in acrylic bone cement and application equipment.
    Kindt-Larsen T; Smith DB; Jensen JS
    J Appl Biomater; 1995; 6(1):75-83. PubMed ID: 7703541
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure-property relationships of DEAEM-containing bone cements: effect of the substitution of a methylene group by an aromatic ring.
    Cervantes-Uc JM; Cauich-Rodríguez JV; Vázquez-Torres H
    J Biomater Sci Polym Ed; 2007; 18(1):1-16. PubMed ID: 17274447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.