These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 8992232)

  • 1. Role of tumor vascular architecture in nutrient and drug delivery: an invasion percolation-based network model.
    Baish JW; Gazit Y; Berk DA; Nozue M; Baxter LT; Jain RK
    Microvasc Res; 1996 May; 51(3):327-46. PubMed ID: 8992232
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transmural coupling of fluid flow in microcirculatory network and interstitium in tumors.
    Baish JW; Netti PA; Jain RK
    Microvasc Res; 1997 Mar; 53(2):128-41. PubMed ID: 9143544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Emergent vascular network inhomogeneities and resulting blood flow patterns in a growing tumor.
    Welter M; Bartha K; Rieger H
    J Theor Biol; 2008 Jan; 250(2):257-80. PubMed ID: 17996256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mathematical modelling of flow through vascular networks: implications for tumour-induced angiogenesis and chemotherapy strategies.
    McDougall SR; Anderson AR; Chaplain MA; Sherratt JA
    Bull Math Biol; 2002 Jul; 64(4):673-702. PubMed ID: 12216417
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of the Fåhraeus effect on NO and O2 biotransport: a computer model.
    Lamkin-Kennard KA; Jaron D; Buerk DG
    Microcirculation; 2004 Jun; 11(4):337-49. PubMed ID: 15280073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational analysis of oxygen transport in the retinal arterial network.
    Liu D; Wood NB; Witt N; Hughes AD; Thom SA; Xu XY
    Curr Eye Res; 2009 Nov; 34(11):945-56. PubMed ID: 19958111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microvascular architecture in a mammary carcinoma: branching patterns and vessel dimensions.
    Less JR; Skalak TC; Sevick EM; Jain RK
    Cancer Res; 1991 Jan; 51(1):265-73. PubMed ID: 1988088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mathematical modelling of dynamic adaptive tumour-induced angiogenesis: clinical implications and therapeutic targeting strategies.
    McDougall SR; Anderson AR; Chaplain MA
    J Theor Biol; 2006 Aug; 241(3):564-89. PubMed ID: 16487543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Perivascular oxygen tensions in a transplantable mammary tumor growing in a dorsal flap window chamber.
    Dewhirst MW; Ong ET; Klitzman B; Secomb TW; Vinuya RZ; Dodge R; Brizel D; Gross JF
    Radiat Res; 1992 May; 130(2):171-82. PubMed ID: 1574573
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical simulation of oxygen transport to brain by networks of microvessels: effects of oxygen supply and demand on tissue hypoxia.
    Secomb TW; Hsu R; Beamer NB; Coull BM
    Microcirculation; 2000 Aug; 7(4):237-47. PubMed ID: 10963629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fractal analysis of vascular networks: insights from morphogenesis.
    Lorthois S; Cassot F
    J Theor Biol; 2010 Feb; 262(4):614-33. PubMed ID: 19913557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vascular network remodeling via vessel cooption, regression and growth in tumors.
    Bartha K; Rieger H
    J Theor Biol; 2006 Aug; 241(4):903-18. PubMed ID: 16545398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-dimensional chemotherapy simulations demonstrate fundamental transport and tumor response limitations involving nanoparticles.
    Sinek J; Frieboes H; Zheng X; Cristini V
    Biomed Microdevices; 2004 Dec; 6(4):297-309. PubMed ID: 15548877
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A cellular automaton model of early tumor growth and invasion.
    Patel AA; Gawlinski ET; Lemieux SK; Gatenby RA
    J Theor Biol; 2001 Dec; 213(3):315-31. PubMed ID: 11735284
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fractal characteristics of tumor vascular architecture during tumor growth and regression.
    Gazit Y; Baish JW; Safabakhsh N; Leunig M; Baxter LT; Jain RK
    Microcirculation; 1997 Dec; 4(4):395-402. PubMed ID: 9431507
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From homogeneous to fractal normal and tumorous microvascular networks in the brain.
    Risser L; Plouraboué F; Steyer A; Cloetens P; Le Duc G; Fonta C
    J Cereb Blood Flow Metab; 2007 Feb; 27(2):293-303. PubMed ID: 16736048
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupled modeling of blood perfusion in intravascular, interstitial spaces in tumor microvasculature.
    Wu J; Xu S; Long Q; Collins MW; König CS; Zhao G; Jiang Y; Padhani AR
    J Biomech; 2008; 41(5):996-1004. PubMed ID: 18222455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extravascular transport of the DNA intercalator and topoisomerase poison N-[2-(Dimethylamino)ethyl]acridine-4-carboxamide (DACA): diffusion and metabolism in multicellular layers of tumor cells.
    Hicks KO; Pruijn FB; Baguley BC; Wilson WR
    J Pharmacol Exp Ther; 2001 Jun; 297(3):1088-98. PubMed ID: 11356933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fractal model for blood flow in cardiovascular system.
    Jayalalitha G; Shanthoshini Deviha V; Uthayakumar R
    Comput Biol Med; 2008 Jun; 38(6):684-93. PubMed ID: 18471808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A computational model of oxygen transport in skeletal muscle for sprouting and splitting modes of angiogenesis.
    Ji JW; Tsoukias NM; Goldman D; Popel AS
    J Theor Biol; 2006 Jul; 241(1):94-108. PubMed ID: 16388825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.