These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Simvastatin elicits dilation of isolated porcine retinal arterioles: role of nitric oxide and mevalonate-rho kinase pathways. Nagaoka T; Hein TW; Yoshida A; Kuo L Invest Ophthalmol Vis Sci; 2007 Feb; 48(2):825-32. PubMed ID: 17251484 [TBL] [Abstract][Full Text] [Related]
3. Hypoxic dilatation of porcine small coronary arteries: role of endothelium and KATP-channels. Liu Q; Flavahan NA Br J Pharmacol; 1997 Feb; 120(4):728-34. PubMed ID: 9051315 [TBL] [Abstract][Full Text] [Related]
4. Reduced basal NO-mediated dilation and decreased endothelial NO-synthase expression in coronary vessels of spontaneously hypertensive rats. Crabos M; Coste P; Paccalin M; Tariosse L; Daret D; Besse P; Bonoron-Adele S J Mol Cell Cardiol; 1997 Jan; 29(1):55-65. PubMed ID: 9040021 [TBL] [Abstract][Full Text] [Related]
5. Role of calcium-activated potassium channels with small conductance in bradykinin-induced vasodilation of porcine retinal arterioles. Dalsgaard T; Kroigaard C; Bek T; Simonsen U Invest Ophthalmol Vis Sci; 2009 Aug; 50(8):3819-25. PubMed ID: 19255162 [TBL] [Abstract][Full Text] [Related]
6. Dilation of retinal arterioles in response to lactate: role of nitric oxide, guanylyl cyclase, and ATP-sensitive potassium channels. Hein TW; Xu W; Kuo L Invest Ophthalmol Vis Sci; 2006 Feb; 47(2):693-9. PubMed ID: 16431969 [TBL] [Abstract][Full Text] [Related]
7. Endothelium-dependent and -independent relaxation in the forelimb and hindlimb vasculatures of swine. Newcomer SC; Taylor JC; Bowles DK; Laughlin MH Comp Biochem Physiol A Mol Integr Physiol; 2007 Oct; 148(2):292-300. PubMed ID: 17544306 [TBL] [Abstract][Full Text] [Related]
8. Upregulation of arginase by H2O2 impairs endothelium-dependent nitric oxide-mediated dilation of coronary arterioles. Thengchaisri N; Hein TW; Wang W; Xu X; Li Z; Fossum TW; Kuo L Arterioscler Thromb Vasc Biol; 2006 Sep; 26(9):2035-42. PubMed ID: 16794224 [TBL] [Abstract][Full Text] [Related]
9. Bradykinin relaxation in small porcine retinal arterioles. Jeppesen P; Aalkjaer C; Bek T Invest Ophthalmol Vis Sci; 2002 Jun; 43(6):1891-6. PubMed ID: 12036995 [TBL] [Abstract][Full Text] [Related]
10. Involvement of K+ channel permeability changes in the L-NAME and indomethacin resistant part of adenosine-5'-O-(2-thiodiphosphate)-induced relaxation of pancreatic vascular bed. Hillaire-Buys D; Chapal J; Linck N; Blayac JP; Petit P; Loubatières-Mariani MM Br J Pharmacol; 1998 May; 124(1):149-56. PubMed ID: 9630354 [TBL] [Abstract][Full Text] [Related]
11. Human coronary arteriolar dilation to bradykinin depends on membrane hyperpolarization: contribution of nitric oxide and Ca2+-activated K+ channels. Miura H; Liu Y; Gutterman DD Circulation; 1999 Jun; 99(24):3132-8. PubMed ID: 10377076 [TBL] [Abstract][Full Text] [Related]
12. Effect of systemic nitric oxide synthase inhibition on optic disc oxygen partial pressure in normoxia and in hypercapnia. Petropoulos IK; Pournaras JA; Stangos AN; Pournaras CJ Invest Ophthalmol Vis Sci; 2009 Jan; 50(1):378-84. PubMed ID: 18676634 [TBL] [Abstract][Full Text] [Related]
13. Alteration of flow-induced dilatation in mesenteric resistance arteries of L-NAME treated rats and its partial association with induction of cyclo-oxygenase-2. Henrion D; Dechaux E; Dowell FJ; Maclour J; Samuel JL; Lévy BI; Michel JB Br J Pharmacol; 1997 May; 121(1):83-90. PubMed ID: 9146891 [TBL] [Abstract][Full Text] [Related]
14. Involvement of nitric oxide in amiodarone- and dronedarone-induced coronary vasodilation in guinea pig heart. Guiraudou P; Pucheu SC; Gayraud R; Gautier P; Roccon A; Herbert JM; Nisato D Eur J Pharmacol; 2004 Aug; 496(1-3):119-27. PubMed ID: 15288583 [TBL] [Abstract][Full Text] [Related]
15. Alteration of endothelial function in arterioles of renal hypertensive rats at two levels of vascular tone. Nakamura T; Prewitt RL J Hypertens; 1992 Jul; 10(7):621-7. PubMed ID: 1321188 [TBL] [Abstract][Full Text] [Related]
16. Endotoxin releases a substance from the aorta that dilates an isolated arteriole by up-regulating INOS. Viol AW; Prewitt RL; Doviak M; Britt LD J Surg Res; 2005 Aug; 127(2):106-11. PubMed ID: 15921695 [TBL] [Abstract][Full Text] [Related]
17. Puerarin, an isoflavonoid derived from Radix puerariae, potentiates endothelium-independent relaxation via the cyclic AMP pathway in porcine coronary artery. Yeung DK; Leung SW; Xu YC; Vanhoutte PM; Man RY Eur J Pharmacol; 2006 Dec; 552(1-3):105-11. PubMed ID: 17027964 [TBL] [Abstract][Full Text] [Related]
18. Characterization of endothelium-derived relaxing factors released by bradykinin in human resistance arteries. Ohlmann P; Martínez MC; Schneider F; Stoclet JC; Andriantsitohaina R Br J Pharmacol; 1997 Jun; 121(4):657-64. PubMed ID: 9208131 [TBL] [Abstract][Full Text] [Related]
19. Effects of oxygen tension on endothelium dependent responses in canine coronary microvessels. Myers PR; Muller JM; Tanner MA Cardiovasc Res; 1991 Nov; 25(11):885-94. PubMed ID: 1813116 [TBL] [Abstract][Full Text] [Related]
20. Adenosine A(2A) receptors mediate coronary microvascular dilation to adenosine: role of nitric oxide and ATP-sensitive potassium channels. Hein TW; Belardinelli L; Kuo L J Pharmacol Exp Ther; 1999 Nov; 291(2):655-64. PubMed ID: 10525085 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]