BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

359 related articles for article (PubMed ID: 8993033)

  • 1. Analysis of chromatin structure by in vivo formaldehyde cross-linking.
    Orlando V; Strutt H; Paro R
    Methods; 1997 Feb; 11(2):205-14. PubMed ID: 8993033
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The scaffold/matrix attachment region binding protein hnRNP-U (SAF-A) is directly bound to chromosomal DNA in vivo: a chemical cross-linking study.
    Göhring F; Fackelmayer FO
    Biochemistry; 1997 Jul; 36(27):8276-83. PubMed ID: 9204873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of protein-DNA association in vivo by chromatin immunoprecipitation.
    Kuras L
    Methods Mol Biol; 2004; 284():147-62. PubMed ID: 15173614
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Utility of formaldehyde cross-linking and mass spectrometry in the study of protein-protein interactions.
    Sutherland BW; Toews J; Kast J
    J Mass Spectrom; 2008 Jun; 43(6):699-715. PubMed ID: 18438963
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo cross-linking and immunoprecipitation for studying dynamic Protein:DNA associations in a chromatin environment.
    Kuo MH; Allis CD
    Methods; 1999 Nov; 19(3):425-33. PubMed ID: 10579938
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultraviolet cross-linking assay to measure sequence-specific DNA binding in vivo.
    Biggin MD
    Methods Enzymol; 1999; 304():496-515. PubMed ID: 10372378
    [No Abstract]   [Full Text] [Related]  

  • 7. Chromatin immunoprecipitation in mammalian cells.
    Svotelis A; Gévry N; Gaudreau L
    Methods Mol Biol; 2009; 543():243-51. PubMed ID: 19378170
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Baculovirus proteins IE-1, LEF-3, and P143 interact with DNA in vivo: a formaldehyde cross-linking study.
    Ito E; Sahri D; Knippers R; Carstens EB
    Virology; 2004 Nov; 329(2):337-47. PubMed ID: 15518813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of chromatin samples in the presence of Drosophila embryo extract by quantitative agarose gel electrophoresis.
    Adkins NL; Johnson CN; Georgel PT
    J Biochem Biophys Methods; 2006 Jun; 67(2-3):141-50. PubMed ID: 16580731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromatin immunoprecipitation using isolated islets of Langerhans.
    Párrizas M; Boj SF; Luco RF; Maestro MA; Ferrer J
    Methods Mol Med; 2003; 83():61-71. PubMed ID: 12619716
    [No Abstract]   [Full Text] [Related]  

  • 11. Analysis of in vivo nucleosome positions by determination of nucleosome-linker boundaries in crosslinked chromatin.
    Fragoso G; Hager GL
    Methods; 1997 Feb; 11(2):246-52. PubMed ID: 8993037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterizing transcription factor binding sites using formaldehyde crosslinking and immunoprecipitation.
    Wells J; Farnham PJ
    Methods; 2002 Jan; 26(1):48-56. PubMed ID: 12054904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A detailed protocol for chromatin immunoprecipitation in the yeast Saccharomyces cerevisiae.
    Grably M; Engelberg D
    Methods Mol Biol; 2010; 638():211-24. PubMed ID: 20238272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement of in vivo DNA binding by sequence-specific transcription factors using UV cross-linking.
    Walter J; Biggin MD
    Methods; 1997 Feb; 11(2):215-24. PubMed ID: 8993034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromatin profiling using targeted DNA adenine methyltransferase.
    van Steensel B; Delrow J; Henikoff S
    Nat Genet; 2001 Mar; 27(3):304-8. PubMed ID: 11242113
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping chromosomal proteins in vivo by formaldehyde-crosslinked-chromatin immunoprecipitation.
    Orlando V
    Trends Biochem Sci; 2000 Mar; 25(3):99-104. PubMed ID: 10694875
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of Drosophila chromatin structure in vivo.
    Cartwright IL; Cryderman DE; Gilmour DS; Pile LA; Wallrath LL; Weber JA; Elgin SC
    Methods Enzymol; 1999; 304():462-96. PubMed ID: 10372377
    [No Abstract]   [Full Text] [Related]  

  • 18. Computer-assisted identification of cell cycle-related genes: new targets for E2F transcription factors.
    Kel AE; Kel-Margoulis OV; Farnham PJ; Bartley SM; Wingender E; Zhang MQ
    J Mol Biol; 2001 May; 309(1):99-120. PubMed ID: 11491305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using chromatin immunoprecipitation to map cotranscriptional mRNA processing in Saccharomyces cerevisiae.
    Keogh MC; Buratowski S
    Methods Mol Biol; 2004; 257():1-16. PubMed ID: 14769992
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Q2ChIP, a quick and quantitative chromatin immunoprecipitation assay, unravels epigenetic dynamics of developmentally regulated genes in human carcinoma cells.
    Dahl JA; Collas P
    Stem Cells; 2007 Apr; 25(4):1037-46. PubMed ID: 17272500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.