These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 8993333)

  • 1. Slow alpha helix formation during folding of a membrane protein.
    Riley ML; Wallace BA; Flitsch SL; Booth PJ
    Biochemistry; 1997 Jan; 36(1):192-6. PubMed ID: 8993333
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The activation energy for insertion of transmembrane alpha-helices is dependent on membrane composition.
    Meijberg W; Booth PJ
    J Mol Biol; 2002 Jun; 319(3):839-53. PubMed ID: 12054874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proline residues in transmembrane alpha helices affect the folding of bacteriorhodopsin.
    Lu H; Marti T; Booth PJ
    J Mol Biol; 2001 Apr; 308(2):437-46. PubMed ID: 11327778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A biophysical study of integral membrane protein folding.
    Hunt JF; Earnest TN; Bousché O; Kalghatgi K; Reilly K; Horváth C; Rothschild KJ; Engelman DM
    Biochemistry; 1997 Dec; 36(49):15156-76. PubMed ID: 9398244
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The final stages of folding of the membrane protein bacteriorhodopsin occur by kinetically indistinguishable parallel folding paths that are mediated by pH.
    Lu H; Booth PJ
    J Mol Biol; 2000 May; 299(1):233-43. PubMed ID: 10860735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence that bilayer bending rigidity affects membrane protein folding.
    Booth PJ; Riley ML; Flitsch SL; Templer RH; Farooq A; Curran AR; Chadborn N; Wright P
    Biochemistry; 1997 Jan; 36(1):197-203. PubMed ID: 8993334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics and motional dynamics of spin-labeled yeast iso-1-cytochrome c: 1. Stopped-flow electron paramagnetic resonance as a probe for protein folding/unfolding of the C-terminal helix spin-labeled at cysteine 102.
    Qu K; Vaughn JL; Sienkiewicz A; Scholes CP; Fetrow JS
    Biochemistry; 1997 Mar; 36(10):2884-97. PubMed ID: 9062118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stabilisation of alpha-helices by site-directed mutagenesis reveals the importance of secondary structure in the transition state for acylphosphatase folding.
    Taddei N; Chiti F; Fiaschi T; Bucciantini M; Capanni C; Stefani M; Serrano L; Dobson CM; Ramponi G
    J Mol Biol; 2000 Jul; 300(3):633-47. PubMed ID: 10884358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of peptides corresponding to the seven transmembrane domains of human adenosine A2a receptor.
    Lazarova T; Brewin KA; Stoeber K; Robinson CR
    Biochemistry; 2004 Oct; 43(40):12945-54. PubMed ID: 15461468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stepwise formation of alpha-helices during cytochrome c folding.
    Akiyama S; Takahashi S; Ishimori K; Morishima I
    Nat Struct Biol; 2000 Jun; 7(6):514-20. PubMed ID: 10881201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alpha-synuclein multistate folding thermodynamics: implications for protein misfolding and aggregation.
    Ferreon AC; Deniz AA
    Biochemistry; 2007 Apr; 46(15):4499-509. PubMed ID: 17378587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correct folding of the beta-barrel of the human membrane protein VDAC requires a lipid bilayer.
    Shanmugavadivu B; Apell HJ; Meins T; Zeth K; Kleinschmidt JH
    J Mol Biol; 2007 Apr; 368(1):66-78. PubMed ID: 17336328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Folding of amphipathic alpha-helices on membranes: energetics of helix formation by melittin.
    Ladokhin AS; White SH
    J Mol Biol; 1999 Jan; 285(4):1363-9. PubMed ID: 9917380
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Retinal binding during folding and assembly of the membrane protein bacteriorhodopsin.
    Booth PJ; Farooq A; Flitsch SL
    Biochemistry; 1996 May; 35(18):5902-9. PubMed ID: 8639552
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Folding of beta-sheet membrane proteins: a hydrophobic hexapeptide model.
    Wimley WC; Hristova K; Ladokhin AS; Silvestro L; Axelsen PH; White SH
    J Mol Biol; 1998 Apr; 277(5):1091-110. PubMed ID: 9571025
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and function in bacteriorhodopsin: the role of the interhelical loops in the folding and stability of bacteriorhodopsin.
    Kim JM; Booth PJ; Allen SJ; Khorana HG
    J Mol Biol; 2001 Apr; 308(2):409-22. PubMed ID: 11327776
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interfacial folding and membrane insertion of a designed helical peptide.
    Ladokhin AS; White SH
    Biochemistry; 2004 May; 43(19):5782-91. PubMed ID: 15134452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rough energy landscapes in protein folding: dimeric E. coli Trp repressor folds through three parallel channels.
    Gloss LM; Simler BR; Matthews CR
    J Mol Biol; 2001 Oct; 312(5):1121-34. PubMed ID: 11580254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The process of folding proteins into membranes: challenges and progress.
    Stanley AM; Fleming KG
    Arch Biochem Biophys; 2008 Jan; 469(1):46-66. PubMed ID: 17971290
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics and thermodynamics of the unfolding and refolding of the three-stranded alpha-helical coiled coil, Lpp-56.
    Dragan AI; Potekhin SA; Sivolob A; Lu M; Privalov PL
    Biochemistry; 2004 Nov; 43(47):14891-900. PubMed ID: 15554696
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.