These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 8993683)

  • 1. Axonal growth and neosynaptogenesis in human and experimental hippocampal epilepsy.
    Babb TL
    Adv Neurol; 1997; 72():45-51. PubMed ID: 8993683
    [No Abstract]   [Full Text] [Related]  

  • 2. Astrocytes may contribute to the latent period in progressive neuron loss, axon sprouting, and chronic seizures in rat kainate hippocampal epilepsy.
    Babb TL; Mathern GW; Pretorius JK; Cifuentes F
    Epilepsy Res Suppl; 1996; 12():343-54. PubMed ID: 9302534
    [No Abstract]   [Full Text] [Related]  

  • 3. Synaptic reorganizations in human and rat hippocampal epilepsy.
    Babb TL
    Adv Neurol; 1999; 79():763-79. PubMed ID: 10514862
    [No Abstract]   [Full Text] [Related]  

  • 4. Seizure circuits in the hippocampus and associated structures.
    Lothman EW
    Hippocampus; 1994 Jun; 4(3):286-90. PubMed ID: 7842051
    [No Abstract]   [Full Text] [Related]  

  • 5. Bidirectional redistribution of AMPA but not NMDA receptors after perforant path simulation in the adult rat hippocampus in vivo.
    Moga DE; Shapiro ML; Morrison JH
    Hippocampus; 2006; 16(11):990-1003. PubMed ID: 17039486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulations of epileptiform activity in the hippocampal CA3 region in vitro.
    Traub RD; Jefferys JG
    Hippocampus; 1994 Jun; 4(3):281-5. PubMed ID: 7842050
    [No Abstract]   [Full Text] [Related]  

  • 7. Seizure-induced molecular changes, sprouting and synaptogenesis of hippocampal mossy fibers.
    Pollard H; Bugra K; Khrestchatisky M; Represa A; Ben-Ari Y
    Epilepsy Res Suppl; 1996; 12():355-63. PubMed ID: 9302535
    [No Abstract]   [Full Text] [Related]  

  • 8. Normal and epileptic activities in a population model of the hippocampal CA3 region.
    Gróbler T; Barna G
    Neurobiology (Bp); 1996; 4(3):265-7. PubMed ID: 9044360
    [No Abstract]   [Full Text] [Related]  

  • 9. Status epilepticus and the late development of spontaneous seizures in the pilocarpine model of epilepsy.
    Lemos T; Cavalheiro EA
    Epilepsy Res Suppl; 1996; 12():137-44. PubMed ID: 9302512
    [No Abstract]   [Full Text] [Related]  

  • 10. Mechanisms that might underlie progression of the epilepsies and how to potentially alter them.
    Carmant L
    Adv Neurol; 2006; 97():305-14. PubMed ID: 16383139
    [No Abstract]   [Full Text] [Related]  

  • 11. Selective vulnerability to perforant path stimulation: role of NMDA and non-NMDA receptors.
    Penix LP; Thompson KW; Wasterlain CG
    Epilepsy Res Suppl; 1996; 12():63-73. PubMed ID: 9302504
    [No Abstract]   [Full Text] [Related]  

  • 12. Interaction of the N-terminal domain of the AMPA receptor GluR4 subunit with the neuronal pentraxin NP1 mediates GluR4 synaptic recruitment.
    Sia GM; Béïque JC; Rumbaugh G; Cho R; Worley PF; Huganir RL
    Neuron; 2007 Jul; 55(1):87-102. PubMed ID: 17610819
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An overview and perspective on the potential relevance of neuronal growth to the development of epilepsy and epilepsy-related disturbances.
    Cotman CW
    Epilepsy Res Suppl; 1992; 9():257-61; discussion 261-4. PubMed ID: 1285909
    [No Abstract]   [Full Text] [Related]  

  • 14. Neuroprotection by estradiol: a role of aromatase against spine synapse loss after blockade of GABA(A) receptors.
    Zhou L; Lehan N; Wehrenberg U; Disteldorf E; von Lossow R; Mares U; Jarry H; Rune GM
    Exp Neurol; 2007 Jan; 203(1):72-81. PubMed ID: 17005180
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dorsal root origin of axonal growth cones: regenerative synapto-neogenesis in the upper spinal dorsal horn of primates.
    Knyihár-Csillik E; Seres L; Rakic P; Csillik B
    Neurobiology (Bp); 1997; 5(4):481-8. PubMed ID: 9591285
    [No Abstract]   [Full Text] [Related]  

  • 16. Epileptiform activity in rat hippocampus strengthens excitatory synapses.
    Abegg MH; Savic N; Ehrengruber MU; McKinney RA; Gähwiler BH
    J Physiol; 2004 Jan; 554(Pt 2):439-48. PubMed ID: 14594985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Epileptogenesis. Epilepsy and aging].
    Olaskoaga J; Urcola J
    Rev Neurol; 1995; 23(124):1297-306. PubMed ID: 8556637
    [No Abstract]   [Full Text] [Related]  

  • 18. New type of synaptically mediated epileptiform activity independent of known glutamate and GABA receptors.
    Skov J; Nedergaard S; Andreasen M
    J Neurophysiol; 2005 Apr; 93(4):1845-56. PubMed ID: 15537816
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GABAergic and glutamatergic axons innervate the axon initial segment and organize GABA(A) receptor clusters of cultured hippocampal pyramidal cells.
    Christie SB; De Blas AL
    J Comp Neurol; 2003 Feb; 456(4):361-74. PubMed ID: 12532408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activity-dependent induction and maintenance of epileptiform activity produced by group I metabotropic glutamate receptors in the rat hippocampal slice.
    Karr L; Rutecki PA
    Epilepsy Res; 2008 Sep; 81(1):14-23. PubMed ID: 18495430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.