These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 8993700)

  • 1. Strategies and mechanisms of recovery after spinal cord injury.
    Murray M
    Adv Neurol; 1997; 72():219-25. PubMed ID: 8993700
    [No Abstract]   [Full Text] [Related]  

  • 2. Restoring function after spinal cord injury: promoting spontaneous regeneration with stem cells and activity-based therapies.
    Belegu V; Oudega M; Gary DS; McDonald JW
    Neurosurg Clin N Am; 2007 Jan; 18(1):143-68, xi. PubMed ID: 17244561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intervention strategies to enhance anatomical plasticity and recovery of function after spinal cord injury.
    Bregman BS; Diener PS; McAtee M; Dai HN; James C
    Adv Neurol; 1997; 72():257-75. PubMed ID: 8993704
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transplantation of embryonic spinal cord-derived neurospheres support growth of supraspinal projections and functional recovery after spinal cord injury in the neonatal rat.
    Nakamura M; Okano H; Toyama Y; Dai HN; Finn TP; Bregman BS
    J Neurosci Res; 2005 Aug; 81(4):457-68. PubMed ID: 15968644
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrophysiological investigations of neurotransplant-mediated recovery after spinal cord injury.
    Skinner RD; Houle JD; Reese NB; Garcia-Rill EE
    Adv Neurol; 1997; 72():277-90. PubMed ID: 8993705
    [No Abstract]   [Full Text] [Related]  

  • 6. Effects of COX-2 and iNOS inhibitors alone or in combination with olfactory ensheathing cell grafts after spinal cord injury.
    López-Vales R; García-Alías G; Guzmán-Lenis MS; Forés J; Casas C; Navarro X; Verdú E
    Spine (Phila Pa 1976); 2006 May; 31(10):1100-6. PubMed ID: 16648743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional recovery after human umbilical cord blood cells transplantation with brain-derived neutrophic factor into the spinal cord injured rat.
    Kuh SU; Cho YE; Yoon DH; Kim KN; Ha Y
    Acta Neurochir (Wien); 2005 Sep; 147(9):985-92; discussion 992. PubMed ID: 16010451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuronal repair and replacement in spinal cord injury.
    Bareyre FM
    J Neurol Sci; 2008 Feb; 265(1-2):63-72. PubMed ID: 17568612
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Therapeutic interventions after spinal cord injury.
    Thuret S; Moon LD; Gage FH
    Nat Rev Neurosci; 2006 Aug; 7(8):628-43. PubMed ID: 16858391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multipotent embryonic spinal cord stem cells expanded by endothelial factors and Shh/RA promote functional recovery after spinal cord injury.
    Lowry N; Goderie SK; Adamo M; Lederman P; Charniga C; Gill J; Silver J; Temple S
    Exp Neurol; 2008 Feb; 209(2):510-22. PubMed ID: 18029281
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The present special issue on Gait recovery after spinal cord injury. Editorial.
    Molinari M; Scivoletto G
    Brain Res Bull; 2009 Jan; 78(1):1. PubMed ID: 18929627
    [No Abstract]   [Full Text] [Related]  

  • 12. Fate of transplanted adult neural stem/progenitor cells and bone marrow-derived mesenchymal stromal cells in the injured adult rat spinal cord and impact on functional recovery.
    Parr AM; Kulbatski I; Wang XH; Keating A; Tator CH
    Surg Neurol; 2008 Dec; 70(6):600-7; discussion 607. PubMed ID: 18291482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Recovery of the spinal function: current potentialities and research prospects].
    Shevelev IN; Baskov AV; Iarikov DE; Borshchenko IA
    Zh Vopr Neirokhir Im N N Burdenko; 2000; (3):35-9. PubMed ID: 11221343
    [No Abstract]   [Full Text] [Related]  

  • 14. Transplanted adult spinal cord-derived neural stem/progenitor cells promote early functional recovery after rat spinal cord injury.
    Parr AM; Kulbatski I; Zahir T; Wang X; Yue C; Keating A; Tator CH
    Neuroscience; 2008 Aug; 155(3):760-70. PubMed ID: 18588947
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Depletion of hematogenous macrophages promotes partial hindlimb recovery and neuroanatomical repair after experimental spinal cord injury.
    Popovich PG; Guan Z; Wei P; Huitinga I; van Rooijen N; Stokes BT
    Exp Neurol; 1999 Aug; 158(2):351-65. PubMed ID: 10415142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recovery of function following grafting of human bone marrow-derived stromal cells into the injured spinal cord.
    Himes BT; Neuhuber B; Coleman C; Kushner R; Swanger SA; Kopen GC; Wagner J; Shumsky JS; Fischer I
    Neurorehabil Neural Repair; 2006 Jun; 20(2):278-96. PubMed ID: 16679505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasticity in the injured spinal cord: can we use it to advantage to reestablish effective bladder voiding and continence?
    Zinck ND; Downie JW
    Prog Brain Res; 2006; 152():147-62. PubMed ID: 16198699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stem cell transplantation and other novel techniques for promoting recovery from spinal cord injury.
    Myckatyn TM; Mackinnon SE; McDonald JW
    Transpl Immunol; 2004 Apr; 12(3-4):343-58. PubMed ID: 15157926
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human umbilical cord blood-derived CD34+ cells may attenuate spinal cord injury by stimulating vascular endothelial and neurotrophic factors.
    Kao CH; Chen SH; Chio CC; Lin MT
    Shock; 2008 Jan; 29(1):49-55. PubMed ID: 17666954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exposure to pulsed magnetic fields enhances motor recovery in cats after spinal cord injury.
    Crowe MJ; Sun ZP; Battocletti JH; Macias MY; Pintar FA; Maiman DJ
    Spine (Phila Pa 1976); 2003 Dec; 28(24):2660-6. PubMed ID: 14673366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.