These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 8993702)

  • 1. Use-dependent plasticity in spinal stepping and standing.
    Edgerton VR; de Leon RD; Tillakaratne N; Recktenwald MR; Hodgson JA; Roy RR
    Adv Neurol; 1997; 72():233-47. PubMed ID: 8993702
    [No Abstract]   [Full Text] [Related]  

  • 2. Does the central pattern generation for locomotion in lamprey depend on glycine inhibition?
    Grillner S; Wallén P
    Acta Physiol Scand; 1980 Sep; 110(1):103-5. PubMed ID: 7468266
    [No Abstract]   [Full Text] [Related]  

  • 3. 3-Nitropropionic acid depresses spinal reflexes involving GABAergic and glycinergic transmission in neonatal rat spinal cord in vitro.
    Gupta R; Deshpande SB
    Life Sci; 2008 Nov; 83(21-22):756-60. PubMed ID: 18930740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hindlimb locomotor and postural training modulates glycinergic inhibition in the spinal cord of the adult spinal cat.
    de Leon RD; Tamaki H; Hodgson JA; Roy RR; Edgerton VR
    J Neurophysiol; 1999 Jul; 82(1):359-69. PubMed ID: 10400964
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasticity of spinal cord reflexes after a complete transection in adult rats: relationship to stepping ability.
    Lavrov I; Gerasimenko YP; Ichiyama RM; Courtine G; Zhong H; Roy RR; Edgerton VR
    J Neurophysiol; 2006 Oct; 96(4):1699-710. PubMed ID: 16823028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 5-HT potentiates GABA- and glycine-activated chloride currents on the same neurons in rat spinal cord.
    Wang DS; Xu TL; Li JS
    J Hirnforsch; 1999; 39(4):531-7. PubMed ID: 10841452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Is the recovery of stepping following spinal cord injury mediated by modifying existing neural pathways or by generating new pathways? A perspective.
    de Leon RD; Roy RR; Edgerton VR
    Phys Ther; 2001 Dec; 81(12):1904-11. PubMed ID: 11736625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasticity of locomotor sensorimotor interactions after peripheral and/or spinal lesions.
    Rossignol S; Barrière G; Frigon A; Barthélemy D; Bouyer L; Provencher J; Leblond H; Bernard G
    Brain Res Rev; 2008 Jan; 57(1):228-40. PubMed ID: 17822774
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distinct roles of glycinergic and GABAergic inhibition in coordinating locomotor-like rhythms in the neonatal mouse spinal cord.
    Hinckley C; Seebach B; Ziskind-Conhaim L
    Neuroscience; 2005; 131(3):745-58. PubMed ID: 15730878
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Zinc modulates primary afferent fiber-evoked responses of ventral roots in neonatal rat spinal cord in vitro.
    Otsuguro K; Ohta T; Ito S
    Neuroscience; 2006; 138(1):281-91. PubMed ID: 16360285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spinal cord plasticity in acquisition and maintenance of motor skills.
    Wolpaw JR
    Acta Physiol (Oxf); 2007 Feb; 189(2):155-69. PubMed ID: 17250566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Mechanisms of stepping rhythm formation during epidural spinal cord stimulation in decerebrated and spinal cord transected cats].
    Bogacheva IN; Nikitin OA; Musienko PE; Savokhin AA; Gerasimenko IuP
    Biofizika; 2009; 54(3):529-36. PubMed ID: 19569517
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monoaminergic establishment of rostrocaudal gradients of rhythmicity in the neonatal mouse spinal cord.
    Christie KJ; Whelan PJ
    J Neurophysiol; 2005 Aug; 94(2):1554-64. PubMed ID: 15829596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence that descending serotonergic systems protect spinal cord plasticity against the disruptive effect of uncontrollable stimulation.
    Crown ED; Grau JW
    Exp Neurol; 2005 Nov; 196(1):164-76. PubMed ID: 16139268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effect of antagonists of inhibiting amino acids on motoneuron postsynaptic potentials in Rana ridibunda].
    Kurchavyĭ GG; Kalinina NI; Veselkin NP
    Zh Evol Biokhim Fiziol; 2006; 42(5):463-71. PubMed ID: 17087011
    [No Abstract]   [Full Text] [Related]  

  • 16. Epidural spinal cord stimulation plus quipazine administration enable stepping in complete spinal adult rats.
    Gerasimenko YP; Ichiyama RM; Lavrov IA; Courtine G; Cai L; Zhong H; Roy RR; Edgerton VR
    J Neurophysiol; 2007 Nov; 98(5):2525-36. PubMed ID: 17855582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Depression of spinal network activity by thiopental: shift from phasic to tonic GABA(A) receptor-mediated inhibition.
    Grasshoff C; Netzhammer N; Schweizer J; Antkowiak B; Hentschke H
    Neuropharmacology; 2008 Oct; 55(5):793-802. PubMed ID: 18619475
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intraspinal micro stimulation generates locomotor-like and feedback-controlled movements.
    Mushahwar VK; Gillard DM; Gauthier MJ; Prochazka A
    IEEE Trans Neural Syst Rehabil Eng; 2002 Mar; 10(1):68-81. PubMed ID: 12173741
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spinal cord injury: there is nothing permanent except change (Heraclitus, 540-480 BC).
    Nistri A; Saccavini M
    Brain Res Bull; 2009 Jan; 78(1):2-3. PubMed ID: 18929626
    [No Abstract]   [Full Text] [Related]  

  • 20. L-type calcium channels and NMDA receptors: a determinant duo for short-term nociceptive plasticity.
    Fossat P; Sibon I; Le Masson G; Landry M; Nagy F
    Eur J Neurosci; 2007 Jan; 25(1):127-35. PubMed ID: 17241274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.