BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 8994169)

  • 1. The accuracy of dose localization for an image-guided frameless radiosurgery system.
    Murphy MJ; Cox RS
    Med Phys; 1996 Dec; 23(12):2043-9. PubMed ID: 8994169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An automatic six-degree-of-freedom image registration algorithm for image-guided frameless stereotaxic radiosurgery.
    Murphy MJ
    Med Phys; 1997 Jun; 24(6):857-66. PubMed ID: 9198019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feasibility of four-dimensional conformal planning for robotic radiosurgery.
    Schlaefer A; Fisseler J; Dieterich S; Shiomi H; Cleary K; Schweikard A
    Med Phys; 2005 Dec; 32(12):3786-92. PubMed ID: 16475778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of system using beam's eye view images to measure respiratory motion tracking errors in image-guided robotic radiosurgery system.
    Inoue M; Shiomi H; Iwata H; Taguchi J; Okawa K; Kikuchi C; Inada K; Iwabuchi M; Murai T; Koike I; Tatewaki K; Ohta S; Inoue T
    J Appl Clin Med Phys; 2015 Jan; 16(1):5049. PubMed ID: 25679160
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Technique for targeting arteriovenous malformations using frameless image-guided robotic radiosurgery.
    Hristov D; Liu L; Adler JR; Gibbs IC; Moore T; Sarmiento M; Chang SD; Dodd R; Marks M; Do HM
    Int J Radiat Oncol Biol Phys; 2011 Mar; 79(4):1232-40. PubMed ID: 20801584
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Technical Note: Evaluation of the systematic accuracy of a frameless, multiple image modality guided, linear accelerator based stereotactic radiosurgery system.
    Wen N; Snyder KC; Scheib SG; Schmelzer P; Qin Y; Li H; Siddiqui MS; Chetty IJ
    Med Phys; 2016 May; 43(5):2527. PubMed ID: 27147363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of a real-time surface image-guided stereotactic positioning system.
    Peng JL; Kahler D; Li JG; Samant S; Yan G; Amdur R; Liu C
    Med Phys; 2010 Oct; 37(10):5421-33. PubMed ID: 21089778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of image-guided positioning for frameless intracranial radiosurgery.
    Lamba M; Breneman JC; Warnick RE
    Int J Radiat Oncol Biol Phys; 2009 Jul; 74(3):913-9. PubMed ID: 19327898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novalis frameless image-guided noninvasive radiosurgery: initial experience.
    Wurm RE; Erbel S; Schwenkert I; Gum F; Agaoglu D; Schild R; Schlenger L; Scheffler D; Brock M; Budach V
    Neurosurgery; 2008 May; 62(5 Suppl):A11-7; discussion A17-8. PubMed ID: 18580775
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Frameless image-guided intracranial and extracranial radiosurgery using the Cyberknife robotic system.
    Gibbs IC
    Cancer Radiother; 2006 Sep; 10(5):283-7. PubMed ID: 16859948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance evaluation of a CyberKnife G4 image-guided robotic stereotactic radiosurgery system.
    Antypas C; Pantelis E
    Phys Med Biol; 2008 Sep; 53(17):4697-718. PubMed ID: 18695294
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Feasibility of using cone-beam CT to verify and reposition the optically guided target localization of linear accelerator based stereotactic radiosurgery.
    Zhu J
    Med Phys; 2011 Jan; 38(1):390-6. PubMed ID: 21361207
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An analysis of the accuracy of the CyberKnife: a robotic frameless stereotactic radiosurgical system.
    Chang SD; Main W; Martin DP; Gibbs IC; Heilbrun MP
    Neurosurgery; 2003 Jan; 52(1):140-6; discussion 146-7. PubMed ID: 12493111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robotic whole body stereotactic radiosurgery: clinical advantages of the Cyberknife integrated system.
    Coste-Manière E; Olender D; Kilby W; Schulz RA
    Int J Med Robot; 2005 Jan; 1(2):28-39. PubMed ID: 17518376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization based trajectory planning for real-time 6DoF robotic patient motion compensation systems.
    Liu X; Wiersma RD
    PLoS One; 2019; 14(1):e0210385. PubMed ID: 30633766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fiducial-free real-time image-guided robotic radiosurgery for tumors of the sacrum/pelvis.
    Muacevic A; Drexler C; Kufeld M; Romanelli P; Duerr HJ; Wowra B
    Radiother Oncol; 2009 Oct; 93(1):37-44. PubMed ID: 19552980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A practical technique for verification of three-dimensional conformal dose distributions in stereotactic radiosurgery.
    Robar JL; Clark BG
    Med Phys; 2000 May; 27(5):978-87. PubMed ID: 10841400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CyberKnife frameless stereotactic radiosurgery for spinal lesions: clinical experience in 125 cases.
    Gerszten PC; Ozhasoglu C; Burton SA; Vogel WJ; Atkins BA; Kalnicki S; Welch WC
    Neurosurgery; 2004 Jul; 55(1):89-98; discussion 98-9. PubMed ID: 15214977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Motion monitoring for cranial frameless stereotactic radiosurgery using video-based three-dimensional optical surface imaging.
    Li G; Ballangrud A; Kuo LC; Kang H; Kirov A; Lovelock M; Yamada Y; Mechalakos J; Amols H
    Med Phys; 2011 Jul; 38(7):3981-94. PubMed ID: 21858995
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Image-guided hypo-fractionated stereotactic radiosurgery to spinal lesions.
    Ryu SI; Chang SD; Kim DH; Murphy MJ; Le QT; Martin DP; Adler JR
    Neurosurgery; 2001 Oct; 49(4):838-46. PubMed ID: 11564244
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.