These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

59 related articles for article (PubMed ID: 8994352)

  • 1. Control of Drosophila opsin gene expression by carotenoids and retinoic acid: northern and western analyses.
    Picking WL; Chen DM; Lee RD; Vogt ME; Polizzi JL; Marietta RG; Stark WS
    Exp Eye Res; 1996 Nov; 63(5):493-500. PubMed ID: 8994352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of Drosophila retinoid and fatty acid binding glycoprotein expression by retinoids and retinoic acid: northern, western and immunocytochemical analyses.
    Shim K; Picking WL; Kutty RK; Thomas CF; Wiggert BN; Stark WS
    Exp Eye Res; 1997 Nov; 65(5):717-27. PubMed ID: 9367652
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increased expression of chloramphenicol acetyltransferase by carotenoid and retinoid replacement in Drosophila opsin promoter fusion stocks.
    Sun D; Chen DM; Harrelson A; Stark WS
    Exp Eye Res; 1993 Aug; 57(2):177-87. PubMed ID: 8405184
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for indirect control of phospholipase C (PLC-beta) by retinoids in Drosophila phototransduction.
    Shim K; Zavarella KM; Thomas CF; Shortridge RD; Stark WS
    Mol Vis; 2001 Sep; 7():216-21. PubMed ID: 11590363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Light deprivation profoundly affects gene expression of interphotoreceptor retinoid-binding protein in the mouse eye.
    Kutty G; Duncan T; Nickerson JM; Si JS; Van Veen T; Chader GJ; Wiggert B
    Exp Eye Res; 1994 Jan; 58(1):65-75. PubMed ID: 8157102
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Receptor demise from alteration of glycosylation site in Drosophila opsin: electrophysiology, microspectrophotometry, and electron microscopy.
    Brown G; Chen DM; Christianson JS; Lee R; Stark WS
    Vis Neurosci; 1994; 11(3):619-28. PubMed ID: 8038132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Opsin maturation and targeting to rhabdomeral photoreceptor membranes requires the retinal chromophore.
    Huber A; Wolfrum U; Paulsen R
    Eur J Cell Biol; 1994 Apr; 63(2):219-29. PubMed ID: 8082646
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatio-temporal characterization of retinal opsin gene expression during thyroid hormone-induced and natural development of rainbow trout.
    Veldhoen K; Allison WT; Veldhoen N; Anholt BR; Helbing CC; Hawryshyn CW
    Vis Neurosci; 2006; 23(2):169-79. PubMed ID: 16638170
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Green cone opsin and rhodopsin regulation by CNTF and staurosporine in cultured chick photoreceptors.
    Xie HQ; Adler R
    Invest Ophthalmol Vis Sci; 2000 Dec; 41(13):4317-23. PubMed ID: 11095633
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Knockdown of wild-type mouse rhodopsin using an AAV vectored ribozyme as part of an RNA replacement approach.
    Gorbatyuk MS; Pang JJ; Thomas J; Hauswirth WW; Lewin AS
    Mol Vis; 2005 Aug; 11():648-56. PubMed ID: 16145542
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Maturation of major Drosophila rhodopsin, ninaE, requires chromophore 3-hydroxyretinal.
    Ozaki K; Nagatani H; Ozaki M; Tokunaga F
    Neuron; 1993 Jun; 10(6):1113-9. PubMed ID: 8318232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcript localization of four opsin genes in the three visual organs of Drosophila; RH2 is ocellus specific.
    Pollock JA; Benzer S
    Nature; 1988 Jun; 333(6175):779-82. PubMed ID: 2968518
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrophysiological sensitivity of carotenoid deficient and replaced Drosophila.
    Chen DM; Stark WS
    Vis Neurosci; 1992 Nov; 9(5):461-9. PubMed ID: 1450100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptional regulation of connexin 43 expression by retinoids and carotenoids: similarities and differences.
    Vine AL; Leung YM; Bertram JS
    Mol Carcinog; 2005 Jun; 43(2):75-85. PubMed ID: 15754312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Induction of VEGF gene expression by retinoic acid through Sp1-binding sites in retinoblastoma Y79 cells.
    Akiyama H; Tanaka T; Maeno T; Kanai H; Kimura Y; Kishi S; Kurabayashi M
    Invest Ophthalmol Vis Sci; 2002 May; 43(5):1367-74. PubMed ID: 11980848
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High retinoid X receptor expression in JEG-3 choriocarcinoma cells: involvement in cell function modulation by retinoids.
    Guibourdenche J; Roulier S; Rochette-Egly C; Evain-Brion D
    J Cell Physiol; 1998 Sep; 176(3):595-601. PubMed ID: 9699512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human blue-opsin promoter preferentially targets reporter gene expression to rat s-cone photoreceptors.
    Glushakova LG; Timmers AM; Pang J; Teusner JT; Hauswirth WW
    Invest Ophthalmol Vis Sci; 2006 Aug; 47(8):3505-13. PubMed ID: 16877422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of Sonic hedgehog and retinal opsin genes in experimentally-induced myopic chick eyes.
    EscaƱo MF; Fujii S; Sekiya Y; Yamamoto M; Negi A
    Exp Eye Res; 2000 Nov; 71(5):459-67. PubMed ID: 11040081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Early duplication and functional diversification of the opsin gene family in insects.
    Spaethe J; Briscoe AD
    Mol Biol Evol; 2004 Aug; 21(8):1583-94. PubMed ID: 15155799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Retinoic acid upregulates cone arrestin expression in retinoblastoma cells through a Cis element in the distal promoter region.
    Li A; Zhu X; Craft CM
    Invest Ophthalmol Vis Sci; 2002 May; 43(5):1375-83. PubMed ID: 11980849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.