These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
717 related articles for article (PubMed ID: 8994357)
1. High galactose levels in vitro and in vivo impair ascorbate regeneration and increase ascorbate-mediated glycation in cultured rat lens. Saxena P; Saxena AK; Monnier VM Exp Eye Res; 1996 Nov; 63(5):535-45. PubMed ID: 8994357 [TBL] [Abstract][Full Text] [Related]
2. Vitamin C metabolomic mapping in the lens with 6-deoxy-6-fluoro-ascorbic acid and high-resolution 19F-NMR spectroscopy. Satake M; Dmochowska B; Nishikawa Y; Madaj J; Xue J; Guo Z; Reddy DV; Rinaldi PL; Monnier VM Invest Ophthalmol Vis Sci; 2003 May; 44(5):2047-58. PubMed ID: 12714643 [TBL] [Abstract][Full Text] [Related]
3. Transition metal-catalyzed oxidation of ascorbate in human cataract extracts: possible role of advanced glycation end products. Saxena P; Saxena AK; Cui XL; Obrenovich M; Gudipaty K; Monnier VM Invest Ophthalmol Vis Sci; 2000 May; 41(6):1473-81. PubMed ID: 10798665 [TBL] [Abstract][Full Text] [Related]
4. A physiological level of ascorbate inhibits galactose cataract in guinea pigs by decreasing polyol accumulation in the lens epithelium: a dehydroascorbate-linked mechanism. Yokoyama T; Sasaki H; Giblin FJ; Reddy VN Exp Eye Res; 1994 Feb; 58(2):207-18. PubMed ID: 8157113 [TBL] [Abstract][Full Text] [Related]
5. A protective role for glutathione-dependent reduction of dehydroascorbic acid in lens epithelium. Sasaki H; Giblin FJ; Winkler BS; Chakrapani B; Leverenz V; Shu CC Invest Ophthalmol Vis Sci; 1995 Aug; 36(9):1804-17. PubMed ID: 7635655 [TBL] [Abstract][Full Text] [Related]
6. Methylglyoxal-derived modifications in lens aging and cataract formation. Shamsi FA; Lin K; Sady C; Nagaraj RH Invest Ophthalmol Vis Sci; 1998 Nov; 39(12):2355-64. PubMed ID: 9804144 [TBL] [Abstract][Full Text] [Related]
7. Argpyrimidine, a blue fluorophore in human lens proteins: high levels in brunescent cataractous lenses. Padayatti PS; Ng AS; Uchida K; Glomb MA; Nagaraj RH Invest Ophthalmol Vis Sci; 2001 May; 42(6):1299-304. PubMed ID: 11328743 [TBL] [Abstract][Full Text] [Related]
8. The relationship between osmotic stress and calcium elevation: in vitro and in vivo rat lens models. Hightower KR; Misiak P Exp Eye Res; 1998 Jun; 66(6):775-81. PubMed ID: 9657910 [TBL] [Abstract][Full Text] [Related]
9. The effects of digitalis-like compounds on rat lenses. Lichtstein D; Levy T; Deutsch J; Steinitz M; Zigler JS; Russell P Invest Ophthalmol Vis Sci; 1999 Feb; 40(2):407-13. PubMed ID: 9950600 [TBL] [Abstract][Full Text] [Related]
10. Glycation of lens proteins by the oxidation products of ascorbic acid. Slight SH; Feather MS; Ortwerth BJ Biochim Biophys Acta; 1990 May; 1038(3):367-74. PubMed ID: 2340296 [TBL] [Abstract][Full Text] [Related]
11. Isolation and characterization of a blue fluorophore from human eye lens crystallins: in vitro formation from Maillard reaction with ascorbate and ribose. Nagaraj RH; Monnier VM Biochim Biophys Acta; 1992 Mar; 1116(1):34-42. PubMed ID: 1540622 [TBL] [Abstract][Full Text] [Related]
12. Effects of magnesium taurate on the onset and progression of galactose-induced experimental cataract: in vivo and in vitro evaluation. Agarwal R; Iezhitsa I; Awaludin NA; Ahmad Fisol NF; Bakar NS; Agarwal P; Abdul Rahman TH; Spasov A; Ozerov A; Mohamed Ahmed Salama MS; Mohd Ismail N Exp Eye Res; 2013 May; 110():35-43. PubMed ID: 23428743 [TBL] [Abstract][Full Text] [Related]
13. Crystallin mRNA concentrations and distribution in lens of normal and galactosemic rats. Implications in development of sugar cataracts. Wen Y; Shi ST; Unakar NJ; Bekhor I Invest Ophthalmol Vis Sci; 1991 Apr; 32(5):1638-47. PubMed ID: 1707863 [TBL] [Abstract][Full Text] [Related]
14. The effect of aqueous humor ascorbate on ultraviolet-B-induced DNA damage in lens epithelium. Reddy VN; Giblin FJ; Lin LR; Chakrapani B Invest Ophthalmol Vis Sci; 1998 Feb; 39(2):344-50. PubMed ID: 9477992 [TBL] [Abstract][Full Text] [Related]
15. Effect of curcumin on galactose-induced cataractogenesis in rats. Suryanarayana P; Krishnaswamy K; Reddy GB Mol Vis; 2003 Jun; 9():223-30. PubMed ID: 12802258 [TBL] [Abstract][Full Text] [Related]
16. Maillard reactions in lens proteins: methylglyoxal-mediated modifications in the rat lens. Shamsi FA; Sharkey E; Creighton D; Nagaraj RH Exp Eye Res; 2000 Mar; 70(3):369-80. PubMed ID: 10712823 [TBL] [Abstract][Full Text] [Related]
17. A human lens model of cortical cataract: Ca2+-induced protein loss, vimentin cleavage and opacification. Sanderson J; Marcantonio JM; Duncan G Invest Ophthalmol Vis Sci; 2000 Jul; 41(8):2255-61. PubMed ID: 10892870 [TBL] [Abstract][Full Text] [Related]
18. The effect of UVA light on the anaerobic oxidation of ascorbic acid and the glycation of lens proteins. Ortwerth BJ; Chemoganskiy V; Mossine VV; Olesen PR Invest Ophthalmol Vis Sci; 2003 Jul; 44(7):3094-102. PubMed ID: 12824256 [TBL] [Abstract][Full Text] [Related]
20. Drinking water supplementation with ascorbate is not protective against UVR-B-induced cataract in the guinea pig. Mody VC; Kakar M; Elfving A; Löfgren S Acta Ophthalmol; 2008 Mar; 86(2):188-95. PubMed ID: 17944982 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]