These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 8994401)

  • 1. Adverse health effects of PM10 particles: involvement of iron in generation of hydroxyl radical.
    Gilmour PS; Brown DM; Lindsay TG; Beswick PH; MacNee W; Donaldson K
    Occup Environ Med; 1996 Dec; 53(12):817-22. PubMed ID: 8994401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of surface free radical activity of respirable industrial fibres using supercoiled phi X174 RF1 plasmid DNA.
    Gilmour PS; Beswick PH; Brown DM; Donaldson K
    Carcinogenesis; 1995 Dec; 16(12):2973-9. PubMed ID: 8603472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Free radical activity of PM10: iron-mediated generation of hydroxyl radicals.
    Donaldson K; Brown DM; Mitchell C; Dineva M; Beswick PH; Gilmour P; MacNee W
    Environ Health Perspect; 1997 Sep; 105 Suppl 5(Suppl 5):1285-9. PubMed ID: 9400739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Free radical activity and pro-inflammatory effects of particulate air pollution (PM10) in vivo and in vitro.
    Li XY; Gilmour PS; Donaldson K; MacNee W
    Thorax; 1996 Dec; 51(12):1216-22. PubMed ID: 8994518
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Free oxygen radiacals and kidney diseases--part I].
    Sakac V; Sakac M
    Med Pregl; 2000; 53(9-10):463-74. PubMed ID: 11320727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genotoxic effects of PM
    Yadav S; Kumbhar N; Jan R; Roy R; Satsangi PG
    Environ Geochem Health; 2019 Jun; 41(3):1163-1186. PubMed ID: 30302579
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Free radical activity associated with the surface of particles: a unifying factor in determining biological activity?
    Donaldson K; Beswick PH; Gilmour PS
    Toxicol Lett; 1996 Nov; 88(1-3):293-8. PubMed ID: 8920751
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Supercoiled plasmid DNA as a model target for assessing the generation of free radicals at the surface of fibres.
    Donaldson K; Gilmour PS; Beswick PH
    Exp Toxicol Pathol; 1995 Sep; 47(4):235-7. PubMed ID: 8855117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Particle characteristics responsible for effects on human lung epithelial cells.
    Aust AE; Ball JC; Hu AA; Lighty JS; Smith KR; Straccia AM; Veranth JM; Young WC
    Res Rep Health Eff Inst; 2002 Dec; (110):1-65; discussion 67-76. PubMed ID: 12578113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative study of the formation of oxidative damage marker 8-hydroxy-2'-deoxyguanosine (8-OHdG) adduct from the nucleoside 2'-deoxyguanosine by transition metals and suspensions of particulate matter in relation to metal content and redox reactivity.
    Valavanidis A; Vlahoyianni T; Fiotakis K
    Free Radic Res; 2005 Oct; 39(10):1071-81. PubMed ID: 16298732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydroxyl radical concentration profile in photo-Fenton oxidation process: generation and consumption of hydroxyl radicals during the discoloration of azo-dye Orange II.
    Maezono T; Tokumura M; Sekine M; Kawase Y
    Chemosphere; 2011 Mar; 82(10):1422-30. PubMed ID: 21146853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of degradation pathways for plasmid DNA in pharmaceutical formulations via accelerated stability studies.
    Evans RK; Xu Z; Bohannon KE; Wang B; Bruner MW; Volkin DB
    J Pharm Sci; 2000 Jan; 89(1):76-87. PubMed ID: 10664540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA damage by free radical production by aminoguanidine.
    Suji G; Sivakami S
    Ann N Y Acad Sci; 2006 May; 1067():191-9. PubMed ID: 16803985
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photo degradation of methyl orange an azo dye by advanced Fenton process using zero valent metallic iron: influence of various reaction parameters and its degradation mechanism.
    Gomathi Devi L; Girish Kumar S; Mohan Reddy K; Munikrishnappa C
    J Hazard Mater; 2009 May; 164(2-3):459-67. PubMed ID: 18805635
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The iron complex of Dp44mT is redox-active and induces hydroxyl radical formation: an EPR study.
    Jansson PJ; Hawkins CL; Lovejoy DB; Richardson DR
    J Inorg Biochem; 2010 Nov; 104(11):1224-8. PubMed ID: 20719391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of pH on Fenton process using estimation of hydroxyl radical with salicylic acid as trapping reagent.
    Chang CY; Hsieh YH; Cheng KY; Hsieh LL; Cheng TC; Yao KS
    Water Sci Technol; 2008; 58(4):873-9. PubMed ID: 18776624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photochemical reduction of ferric iron by chelators results in DNA strand breaks.
    Chao CC; Aust AE
    Arch Biochem Biophys; 1993 Feb; 300(2):544-50. PubMed ID: 8382025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Free radical activity of synthetic vitreous fibers: iron chelation inhibits hydroxyl radical generation by refractory ceramic fiber.
    Brown DM; Fisher C; Donaldson K
    J Toxicol Environ Health A; 1998 Apr; 53(7):545-61. PubMed ID: 9561968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antioxidant Activity of Caffeic Acid against Iron-Induced Free Radical Generation--A Chemical Approach.
    Genaro-Mattos TC; Maurício ÂQ; Rettori D; Alonso A; Hermes-Lima M
    PLoS One; 2015; 10(6):e0129963. PubMed ID: 26098639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of glutathione on Fenton reagent-dependent radical production and DNA oxidation.
    Spear N; Aust SD
    Arch Biochem Biophys; 1995 Dec; 324(1):111-6. PubMed ID: 7503544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.