BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 8994588)

  • 41. The axial methionine ligand may control the redox reorganizations in the active site of blue copper proteins.
    Ando K
    J Chem Phys; 2010 Nov; 133(17):175101. PubMed ID: 21054068
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Ultrafast pump-probe study of excited-state charge-transfer dynamics in umecyanin from horseradish root.
    Delfino I; Manzoni C; Sato K; Dennison C; Cerullo G; Cannistraro S
    J Phys Chem B; 2006 Aug; 110(34):17252-9. PubMed ID: 16928024
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Nonadiabatic excited-state molecular dynamics: modeling photophysics in organic conjugated materials.
    Nelson T; Fernandez-Alberti S; Roitberg AE; Tretiak S
    Acc Chem Res; 2014 Apr; 47(4):1155-64. PubMed ID: 24673100
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The specificity in the interaction between cytochrome f and plastocyanin from the cyanobacterium Nostoc sp. PCC 7119 is mainly determined by the copper protein.
    Albarrán C; Navarro JA; De la Rosa MA; Hervás M
    Biochemistry; 2007 Jan; 46(4):997-1003. PubMed ID: 17240983
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Active site structures and the redox properties of blue copper proteins: atomic resolution structure of azurin II and electronic structure calculations of azurin, plastocyanin and stellacyanin.
    Paraskevopoulos K; Sundararajan M; Surendran R; Hough MA; Eady RR; Hillier IH; Hasnain SS
    Dalton Trans; 2006 Jul; (25):3067-76. PubMed ID: 16786065
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Unrestricted density functional theory based on the fragment molecular orbital method for the ground and excited state calculations of large systems.
    Nakata H; Fedorov DG; Yokojima S; Kitaura K; Sakurai M; Nakamura S
    J Chem Phys; 2014 Apr; 140(14):144101. PubMed ID: 24735282
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Glassy protein dynamics and gigantic solvent reorganization energy of plastocyanin.
    LeBard DN; Matyushov DV
    J Phys Chem B; 2008 Apr; 112(16):5218-27. PubMed ID: 18341321
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Spectroscopic studies on electron transfer between plastocyanin and cytochrome b6f complex.
    Sujak A; Drepper F; Haehnel W
    J Photochem Photobiol B; 2004 May; 74(2-3):135-43. PubMed ID: 15157909
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Interaction of plastocyanin with oligopeptides: effect of lysine distribution within the peptide.
    Hirota S; Okumura H; Arie S; Tanaka K; Shionoya M; Takabe T; Funasaki N; Watanabe Y
    J Inorg Biochem; 2004 May; 98(5):849-55. PubMed ID: 15134931
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Kinetics of electron transfer between plastocyanin and the soluble CuA domain of cyanobacterial cytochrome c oxidase.
    Paumann M; Bernroitner M; Lubura B; Peer M; Jakopitsch C; Furtmüller PG; Peschek GA; Obinger C
    FEMS Microbiol Lett; 2004 Oct; 239(2):301-7. PubMed ID: 15476980
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Redox entropy of plastocyanin: developing a microscopic view of mesoscopic polar solvation.
    LeBard DN; Matyushov DV
    J Chem Phys; 2008 Apr; 128(15):155106. PubMed ID: 18433287
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Spectroscopic studies of the Met182Thr mutant of nitrite reductase: role of the axial ligand in the geometric and electronic structure of blue and green copper sites.
    Basumallick L; Szilagyi RK; Zhao Y; Shapleigh JP; Scholes CP; Solomon EI
    J Am Chem Soc; 2003 Dec; 125(48):14784-92. PubMed ID: 14640653
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Redox-induced conformational changes in plastocyanin: an infrared study.
    Taneva SG; Kaiser U; Donchev AA; Dimitrov MI; Mäntele W; Muga A
    Biochemistry; 1999 Jul; 38(30):9640-7. PubMed ID: 10423242
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Probing the charge transfer reaction coordinate of 4-(dimethylamino)benzonitrile with femtosecond stimulated Raman spectroscopy.
    Rhinehart JM; Mehlenbacher RD; McCamant D
    J Phys Chem B; 2010 Nov; 114(45):14646-56. PubMed ID: 20568804
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Molecular dynamics of amicyanin reveals a conserved dynamical core for blue copper proteins.
    Rizzuti B; Sportelli L; Guzzi R
    Proteins; 2009 Mar; 74(4):961-71. PubMed ID: 18767164
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Modulation of copper site properties by remote residues determines the stability of plastocyanins.
    Muñoz-López FJ; Beltrán EF; Díaz-Moreno S; Díaz-Moreno I; Subías G; De la Rosa MA; Díaz-Quintana A
    FEBS Lett; 2010 Jun; 584(11):2346-50. PubMed ID: 20398655
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Detection of short-lived transient protein-protein interactions by intermolecular nuclear paramagnetic relaxation: plastocyanin from Anabaena variabilis.
    Hansen DF; Hass MA; Christensen HM; Ulstrup J; Led JJ
    J Am Chem Soc; 2003 Jun; 125(23):6858-9. PubMed ID: 12783525
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Energy and electron transfer in beta-alkynyl-linked porphyrin-[60]fullerene dyads.
    Vail SA; Schuster DI; Guldi DM; Isosomppi M; Tkachenko N; Lemmetyinen H; Palkar A; Echegoyen L; Chen X; Zhang JZ
    J Phys Chem B; 2006 Jul; 110(29):14155-66. PubMed ID: 16854114
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Electronic structure contributions to function in bioinorganic chemistry.
    Solomon EI; Lowery MD
    Science; 1993 Mar; 259(5101):1575-81. PubMed ID: 8384374
    [TBL] [Abstract][Full Text] [Related]  

  • 60. An NMR investigation of electron transfer in the copper-protein, plastocyanin.
    Beattie JK; Fensom DJ; Freeman HC; Woodcock E; Hill HA; Stokes AM
    Biochim Biophys Acta; 1975 Sep; 405(1):109-14. PubMed ID: 240433
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.