These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 8994595)

  • 1. The structure and organization of synthetic putative membranous segments of ROMK1 channel in phospholipid membranes.
    Ben-Efraim I; Shai Y
    Biophys J; 1997 Jan; 72(1):85-96. PubMed ID: 8994595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Secondary structure, membrane localization, and coassembly within phospholipid membranes of synthetic segments derived from the N- and C-termini regions of the ROMK1 K+ channel.
    Ben-Efraim I; Shai Y
    Protein Sci; 1996 Nov; 5(11):2287-97. PubMed ID: 8931147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Secondary structure analysis of the putative membrane-associated domains of the inward rectifier K+ channel ROMK1.
    Brazier SP; Ramesh B; Haris PI; Lee DC; Srai SK
    Biochem J; 1998 Oct; 335 ( Pt 2)(Pt 2):375-80. PubMed ID: 9761737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coassembly of synthetic segments of shaker K+ channel within phospholipid membranes.
    Peled-Zehavi H; Arkin IT; Engelman DM; Shai Y
    Biochemistry; 1996 May; 35(21):6828-38. PubMed ID: 8639634
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthetic S-2 and H-5 segments of the Shaker K+ channel: secondary structure, membrane interaction, and assembly within phospholipid membranes.
    Peled H; Shai Y
    Biochemistry; 1994 Jun; 33(23):7211-9. PubMed ID: 8003486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane interaction and self-assembly within phospholipid membranes of synthetic segments corresponding to the H-5 region of the shaker K+ channel.
    Peled H; Shai Y
    Biochemistry; 1993 Aug; 32(31):7879-85. PubMed ID: 8347593
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthetic peptides corresponding to the four P regions of Electrophorus electricus Na+ channel: interaction with and organization in model phospholipid membranes.
    Pouny Y; Shai Y
    Biochemistry; 1995 Jun; 34(23):7712-21. PubMed ID: 7779818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Secondary structure and membrane localization of synthetic segments and a truncated form of the IsK (minK) protein.
    Ben-Efraim I; Strahilevitz J; Bach D; Shai Y
    Biochemistry; 1994 Jun; 33(22):6966-73. PubMed ID: 8204631
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectroscopic and functional characterization of the putative transmembrane segment of the minK potassium channel.
    Ben-Efraim I; Bach D; Shai Y
    Biochemistry; 1993 Mar; 32(9):2371-7. PubMed ID: 8443177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The assembly and organization of the alpha 5 and alpha 7 helices from the pore-forming domain of Bacillus thuringiensis delta-endotoxin. Relevance to a functional model.
    Gazit E; Shai Y
    J Biol Chem; 1995 Feb; 270(6):2571-8. PubMed ID: 7852320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intrinsic helical propensities and stable secondary structure in a membrane-bound fragment (S4) of the shaker potassium channel.
    Halsall A; Dempsey CE
    J Mol Biol; 1999 Nov; 293(4):901-15. PubMed ID: 10543975
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural characterization, membrane interaction, and specific assembly within phospholipid membranes of hydrophobic segments from Bacillus thuringiensis var. israelensis cytolytic toxin.
    Gazit E; Shai Y
    Biochemistry; 1993 Nov; 32(46):12363-71. PubMed ID: 8241124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ion channel activity of a synthetic peptide with a primary structure corresponding to the presumed pore-forming region of the voltage dependent potassium channel.
    Shinozaki K; Anzai K; Kirino Y; Lee S; Aoyagi H
    Biochem Biophys Res Commun; 1994 Jan; 198(2):445-50. PubMed ID: 8297354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peptides modeled on the transmembrane region of the slow voltage-gated IsK potassium channel: structural characterization of peptide assemblies in the beta-strand conformation.
    Aggeli A; Boden N; Cheng YL; Findlay JB; Knowles PF; Kovatchev P; Turnbull PJ
    Biochemistry; 1996 Dec; 35(50):16213-21. PubMed ID: 8973194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insertion and orientation of a synthetic peptide representing the C-terminus of the A1 domain of Shiga toxin into phospholipid membranes.
    Saleh MT; Ferguson J; Boggs JM; GariƩpy J
    Biochemistry; 1996 Jul; 35(29):9325-34. PubMed ID: 8755710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Designing transmembrane alpha-helices that insert spontaneously.
    Wimley WC; White SH
    Biochemistry; 2000 Apr; 39(15):4432-42. PubMed ID: 10757993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthetic peptide fragments as probes for structure determination of potassium ion-channel proteins.
    Haris PI
    Biosci Rep; 1998 Dec; 18(6):299-312. PubMed ID: 10357173
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mapping the kidney potassium channel ROMK1. Glycosylation of the pore signature sequence and the COOH terminus.
    Schwalbe RA; Bianchi L; Brown AM
    J Biol Chem; 1997 Oct; 272(40):25217-23. PubMed ID: 9312136
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel sites of N-glycosylation in ROMK1 reveal the putative pore-forming segment H5 as extracellular.
    Schwalbe RA; Wang Z; Bianchi L; Brown AM
    J Biol Chem; 1996 Sep; 271(39):24201-6. PubMed ID: 8798662
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scanning mutagenesis of the putative transmembrane segments of Kir2.1, an inward rectifier potassium channel.
    Collins A; Chuang H; Jan YN; Jan LY
    Proc Natl Acad Sci U S A; 1997 May; 94(10):5456-60. PubMed ID: 9144259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.