These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 8994622)
1. Triplet state magnetic resonance and fluorescence spectroscopy of metal-substituted hemoglobins. Polm MW; Schaafsma TJ Biophys J; 1997 Jan; 72(1):373-82. PubMed ID: 8994622 [TBL] [Abstract][Full Text] [Related]
2. Spectroscopy and photophysics of self-organized zinc porphyrin nanolayers. 3. Fluorescence detected magnetic resonance of triplet States. Schaafsma T; Dag I; Sitters R; Glasbeek M; Lifshitz E J Phys Chem B; 2005 Sep; 109(36):17047-54. PubMed ID: 16853173 [TBL] [Abstract][Full Text] [Related]
3. Zinc-substituted hemoglobins: alpha- and beta-chain differences monitored by high-resolution emission spectroscopy. Sudhakar K; Laberge M; Tsuneshige A; Vanderkooi JM Biochemistry; 1998 May; 37(20):7177-84. PubMed ID: 9585529 [TBL] [Abstract][Full Text] [Related]
4. Structural and dynamic properties of Synechocystis sp. PCC 6803 Hb revealed by reconstitution with Zn-protoporphyrin IX. Lecomte JT; Vu BC; Falzone CJ J Inorg Biochem; 2005 Aug; 99(8):1585-92. PubMed ID: 15961161 [TBL] [Abstract][Full Text] [Related]
5. Magnesium(II) and zinc(II)-protoporphyrin IX's stabilize the lowest oxygen affinity state of human hemoglobin even more strongly than deoxyheme. Miyazaki G; Morimoto H; Yun KM; Park SY; Nakagawa A; Minagawa H; Shibayama N J Mol Biol; 1999 Oct; 292(5):1121-36. PubMed ID: 10512707 [TBL] [Abstract][Full Text] [Related]
6. UV resonance Raman studies of alpha-nitrosyl hemoglobin derivatives: relation between the alpha 1-beta 2 subunit interface interactions and the Fe-histidine bonding of alpha heme. Nagatomo S; Nagai M; Tsuneshige A; Yonetani T; Kitagawa T Biochemistry; 1999 Jul; 38(30):9659-66. PubMed ID: 10423244 [TBL] [Abstract][Full Text] [Related]
7. Electron paramagnetic resonance of the excited triplet state of metal-free and metal-substituted cytochrome c. Angiolillo PJ; Vanderkooi JM Biophys J; 1995 Jun; 68(6):2505-18. PubMed ID: 7647253 [TBL] [Abstract][Full Text] [Related]
8. Rigidity of the heme pocket in the cooperative Scapharca hemoglobin homodimer and relation to the direct communication between hemes. Ilari A; Boffi A; Chiancone E Arch Biochem Biophys; 1995 Jan; 316(1):378-84. PubMed ID: 7840639 [TBL] [Abstract][Full Text] [Related]
9. Ferric species of the giant extracellular hemoglobin of Glossoscolex paulistus as function of pH: an EPR study on the irreversibility of the heme transitions. Moreira LM; Poli AL; Lyon JP; Saade J; Costa-Filho AJ; Imasato H Comp Biochem Physiol B Biochem Mol Biol; 2008 Jul; 150(3):292-300. PubMed ID: 18485775 [TBL] [Abstract][Full Text] [Related]
10. Quaternary-transformation-induced changes at the heme in deoxyhemoglobins. Ondrias MR; Rousseau DL; Shelnutt JA; Simon SR Biochemistry; 1982 Jul; 21(14):3428-37. PubMed ID: 6288075 [TBL] [Abstract][Full Text] [Related]
11. Magnetic resonance studies of the binding of ATP and cations to human hemoglobin. Gupta RK; Benovic JL; Rose ZB J Biol Chem; 1978 Sep; 253(17):6165-71. PubMed ID: 210170 [No Abstract] [Full Text] [Related]
12. A new mode for heme-heme interactions in hemoglobin associated with distal perturbations. Levy A; Sharma VS; Zhang L; Rifkind JM Biophys J; 1992 Mar; 61(3):750-5. PubMed ID: 1324020 [TBL] [Abstract][Full Text] [Related]
13. Heterometallic hybrids of homometallic human hemoglobins. Huang Y; Yonetani T; Tsuneshige A; Hoffman BM; Ackers GK Proc Natl Acad Sci U S A; 1996 Apr; 93(9):4425-30. PubMed ID: 8633083 [TBL] [Abstract][Full Text] [Related]
14. Volumetric properties underlying ligand binding in a monomeric hemoglobin: a high-pressure NMR study. Dellarole M; Roumestand C; Royer C; Lecomte JT Biochim Biophys Acta; 2013 Sep; 1834(9):1910-22. PubMed ID: 23619242 [TBL] [Abstract][Full Text] [Related]
15. Tension in haemoglobin revealed by Fe-His(F8) bond rupture in the fully liganded T-state. Paoli M; Dodson G; Liddington RC; Wilkinson AJ J Mol Biol; 1997 Aug; 271(2):161-7. PubMed ID: 9268649 [TBL] [Abstract][Full Text] [Related]
17. The photoexcited triplet state as a probe of chromophore-protein interaction in myoglobin. Angiolillo PJ; Vanderkooi JM Biophys J; 1998 Sep; 75(3):1491-502. PubMed ID: 9726951 [TBL] [Abstract][Full Text] [Related]
18. T-quaternary structure of oxy human adult hemoglobin in the presence of two allosteric effectors, L35 and IHP. Kanaori K; Tajiri Y; Tsuneshige A; Ishigami I; Ogura T; Tajima K; Neya S; Yonetani T Biochim Biophys Acta; 2011 Oct; 1807(10):1253-61. PubMed ID: 21703224 [TBL] [Abstract][Full Text] [Related]
19. A magnetic study of acidic ferric hemoglobin. Nakano N; Nakano K; Tasaki A Biochim Biophys Acta; 1971 Dec; 251(3):303-13. PubMed ID: 11452870 [TBL] [Abstract][Full Text] [Related]
20. A proton nuclear magnetic resonance investigation of proximal histidyl residues in human normal and abnormal hemoglobins. A probe for the heme pocket. Takahashi S; Lin AK; Ho C Biophys J; 1982 Jul; 39(1):33-40. PubMed ID: 7104448 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]