These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 8994881)
1. Novel metal sites in protein structures. Volbeda A; Fontecilla-Camps JC; Frey M Curr Opin Struct Biol; 1996 Dec; 6(6):804-12. PubMed ID: 8994881 [TBL] [Abstract][Full Text] [Related]
2. New metal cofactors and recent metallocofactor insights. Hausinger RP Curr Opin Struct Biol; 2019 Dec; 59():1-8. PubMed ID: 30711735 [TBL] [Abstract][Full Text] [Related]
3. A computational framework for proteome-wide pursuit and prediction of metalloproteins using ICP-MS and MS/MS data. Lancaster WA; Praissman JL; Poole FL; Cvetkovic A; Menon AL; Scott JW; Jenney FE; Thorgersen MP; Kalisiak E; Apon JV; Trauger SA; Siuzdak G; Tainer JA; Adams MW BMC Bioinformatics; 2011 Feb; 12():64. PubMed ID: 21356119 [TBL] [Abstract][Full Text] [Related]
4. The active sites of molybdenum- and tungsten-containing enzymes. McMaster J; Enemark JH Curr Opin Chem Biol; 1998 Apr; 2(2):201-7. PubMed ID: 9667924 [TBL] [Abstract][Full Text] [Related]
5. Rational Design of Artificial Metalloproteins and Metalloenzymes with Metal Clusters. Lin YW Molecules; 2019 Jul; 24(15):. PubMed ID: 31362341 [TBL] [Abstract][Full Text] [Related]
10. Molybdenum and tungsten in biology. Hille R Trends Biochem Sci; 2002 Jul; 27(7):360-7. PubMed ID: 12114025 [TBL] [Abstract][Full Text] [Related]
11. Modeling the active sites in metalloenzymes. 3. Density functional calculations on models for [Fe]-hydrogenase: structures and vibrational frequencies of the observed redox forms and the reaction mechanism at the Diiron Active Center. Cao Z; Hall MB J Am Chem Soc; 2001 Apr; 123(16):3734-42. PubMed ID: 11457105 [TBL] [Abstract][Full Text] [Related]
12. Identification of two-histidines one-carboxylate binding motifs in proteins amenable to facial coordination to metals. Amrein B; Schmid M; Collet G; Cuniasse P; Gilardoni F; Seebeck FP; Ward TR Metallomics; 2012 Apr; 4(4):379-88. PubMed ID: 22392271 [TBL] [Abstract][Full Text] [Related]
13. Active sites of transition-metal enzymes with a focus on nickel. Ermler U; Grabarse W; Shima S; Goubeaud M; Thauer RK Curr Opin Struct Biol; 1998 Dec; 8(6):749-58. PubMed ID: 9914255 [TBL] [Abstract][Full Text] [Related]
14. Role of cofactors in metalloprotein folding. Wilson CJ; Apiyo D; Wittung-Stafshede P Q Rev Biophys; 2004; 37(3-4):285-314. PubMed ID: 16194296 [TBL] [Abstract][Full Text] [Related]
15. The mechanistic insights into different aspects of promiscuity in metalloenzymes. Tripathi A; Dubey KD Adv Protein Chem Struct Biol; 2024; 141():23-66. PubMed ID: 38960476 [TBL] [Abstract][Full Text] [Related]
16. Abiological catalysis by artificial haem proteins containing noble metals in place of iron. Key HM; Dydio P; Clark DS; Hartwig JF Nature; 2016 Jun; 534(7608):534-7. PubMed ID: 27296224 [TBL] [Abstract][Full Text] [Related]
17. Metal ions in biological catalysis: from enzyme databases to general principles. Andreini C; Bertini I; Cavallaro G; Holliday GL; Thornton JM J Biol Inorg Chem; 2008 Nov; 13(8):1205-18. PubMed ID: 18604568 [TBL] [Abstract][Full Text] [Related]
18. Rational design of nascent metalloenzymes. Benson DE; Wisz MS; Hellinga HW Proc Natl Acad Sci U S A; 2000 Jun; 97(12):6292-7. PubMed ID: 10841535 [TBL] [Abstract][Full Text] [Related]