These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 8994881)

  • 1. Novel metal sites in protein structures.
    Volbeda A; Fontecilla-Camps JC; Frey M
    Curr Opin Struct Biol; 1996 Dec; 6(6):804-12. PubMed ID: 8994881
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New metal cofactors and recent metallocofactor insights.
    Hausinger RP
    Curr Opin Struct Biol; 2019 Dec; 59():1-8. PubMed ID: 30711735
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A computational framework for proteome-wide pursuit and prediction of metalloproteins using ICP-MS and MS/MS data.
    Lancaster WA; Praissman JL; Poole FL; Cvetkovic A; Menon AL; Scott JW; Jenney FE; Thorgersen MP; Kalisiak E; Apon JV; Trauger SA; Siuzdak G; Tainer JA; Adams MW
    BMC Bioinformatics; 2011 Feb; 12():64. PubMed ID: 21356119
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The active sites of molybdenum- and tungsten-containing enzymes.
    McMaster J; Enemark JH
    Curr Opin Chem Biol; 1998 Apr; 2(2):201-7. PubMed ID: 9667924
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rational Design of Artificial Metalloproteins and Metalloenzymes with Metal Clusters.
    Lin YW
    Molecules; 2019 Jul; 24(15):. PubMed ID: 31362341
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel bacterial molybdenum and tungsten enzymes: three-dimensional structure, spectroscopy, and reaction mechanism.
    Boll M; Schink B; Messerschmidt A; Kroneck PM
    Biol Chem; 2005 Oct; 386(10):999-1006. PubMed ID: 16218872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biosynthesis of metal sites.
    Kuchar J; Hausinger RP
    Chem Rev; 2004 Feb; 104(2):509-25. PubMed ID: 14871133
    [No Abstract]   [Full Text] [Related]  

  • 8. Microbial metalloproteomes are largely uncharacterized.
    Cvetkovic A; Menon AL; Thorgersen MP; Scott JW; Poole FL; Jenney FE; Lancaster WA; Praissman JL; Shanmukh S; Vaccaro BJ; Trauger SA; Kalisiak E; Apon JV; Siuzdak G; Yannone SM; Tainer JA; Adams MW
    Nature; 2010 Aug; 466(7307):779-82. PubMed ID: 20639861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metalloenzymes, structural motifs, and inorganic models.
    Karlin KD
    Science; 1993 Aug; 261(5122):701-8. PubMed ID: 7688141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molybdenum and tungsten in biology.
    Hille R
    Trends Biochem Sci; 2002 Jul; 27(7):360-7. PubMed ID: 12114025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling the active sites in metalloenzymes. 3. Density functional calculations on models for [Fe]-hydrogenase: structures and vibrational frequencies of the observed redox forms and the reaction mechanism at the Diiron Active Center.
    Cao Z; Hall MB
    J Am Chem Soc; 2001 Apr; 123(16):3734-42. PubMed ID: 11457105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of two-histidines one-carboxylate binding motifs in proteins amenable to facial coordination to metals.
    Amrein B; Schmid M; Collet G; Cuniasse P; Gilardoni F; Seebeck FP; Ward TR
    Metallomics; 2012 Apr; 4(4):379-88. PubMed ID: 22392271
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Active sites of transition-metal enzymes with a focus on nickel.
    Ermler U; Grabarse W; Shima S; Goubeaud M; Thauer RK
    Curr Opin Struct Biol; 1998 Dec; 8(6):749-58. PubMed ID: 9914255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of cofactors in metalloprotein folding.
    Wilson CJ; Apiyo D; Wittung-Stafshede P
    Q Rev Biophys; 2004; 37(3-4):285-314. PubMed ID: 16194296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The mechanistic insights into different aspects of promiscuity in metalloenzymes.
    Tripathi A; Dubey KD
    Adv Protein Chem Struct Biol; 2024; 141():23-66. PubMed ID: 38960476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Abiological catalysis by artificial haem proteins containing noble metals in place of iron.
    Key HM; Dydio P; Clark DS; Hartwig JF
    Nature; 2016 Jun; 534(7608):534-7. PubMed ID: 27296224
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metal ions in biological catalysis: from enzyme databases to general principles.
    Andreini C; Bertini I; Cavallaro G; Holliday GL; Thornton JM
    J Biol Inorg Chem; 2008 Nov; 13(8):1205-18. PubMed ID: 18604568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rational design of nascent metalloenzymes.
    Benson DE; Wisz MS; Hellinga HW
    Proc Natl Acad Sci U S A; 2000 Jun; 97(12):6292-7. PubMed ID: 10841535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzymatic activity mastered by altering metal coordination spheres.
    Moura I; Pauleta SR; Moura JJ
    J Biol Inorg Chem; 2008 Nov; 13(8):1185-95. PubMed ID: 18719950
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molybdenum-cofactor-containing enzymes: structure and mechanism.
    Kisker C; Schindelin H; Rees DC
    Annu Rev Biochem; 1997; 66():233-67. PubMed ID: 9242907
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.