These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 8994968)
1. The structure of glucose-fructose oxidoreductase from Zymomonas mobilis: an osmoprotective periplasmic enzyme containing non-dissociable NADP. Kingston RL; Scopes RK; Baker EN Structure; 1996 Dec; 4(12):1413-28. PubMed ID: 8994968 [TBL] [Abstract][Full Text] [Related]
2. Crystal structure of a truncated mutant of glucose-fructose oxidoreductase shows that an N-terminal arm controls tetramer formation. Lott JS; Halbig D; Baker HM; Hardman MJ; Sprenger GA; Baker EN J Mol Biol; 2000 Dec; 304(4):575-84. PubMed ID: 11099381 [TBL] [Abstract][Full Text] [Related]
3. Glucose-fructose oxidoreductase, a periplasmic enzyme of Zymomonas mobilis, is active in its precursor form. Loos H; Sahm H; Sprenger GA FEMS Microbiol Lett; 1993 Mar; 107(2-3):293-8. PubMed ID: 8472911 [TBL] [Abstract][Full Text] [Related]
4. The substitution of a single amino acid residue (Ser-116 --> Asp) alters NADP-containing glucose-fructose oxidoreductase of Zymomonas mobilis into a glucose dehydrogenase with dual coenzyme specificity. Wiegert T; Sahm H; Sprenger GA J Biol Chem; 1997 May; 272(20):13126-33. PubMed ID: 9148926 [TBL] [Abstract][Full Text] [Related]
5. Crystal structures of the precursor form of glucose-fructose oxidoreductase from Zymomonas mobilis and its complexes with bound ligands. Nurizzo D; Halbig D; Sprenger GA; Baker EN Biochemistry; 2001 Nov; 40(46):13857-67. PubMed ID: 11705375 [TBL] [Abstract][Full Text] [Related]
6. Expression of the Zymomonas mobilis gfo gene or NADP-containing glucose:fructose oxidoreductase (GFOR) in Escherichia coli. Formation of enzymatically active preGFOR but lack of processing into a stable periplasmic protein. Wiegert T; Sahm H; Sprenger GA Eur J Biochem; 1997 Feb; 244(1):107-12. PubMed ID: 9063452 [TBL] [Abstract][Full Text] [Related]
7. Crystal structure of 1-deoxy-d-xylulose-5-phosphate reductoisomerase from Zymomonas mobilis at 1.9-A resolution. Ricagno S; Grolle S; Bringer-Meyer S; Sahm H; Lindqvist Y; Schneider G Biochim Biophys Acta; 2004 Apr; 1698(1):37-44. PubMed ID: 15063313 [TBL] [Abstract][Full Text] [Related]
8. Export of the periplasmic NADP-containing glucose-fructose oxidoreductase of Zymomonas mobilis. Wiegert T; Sahm H; Sprenger GA Arch Microbiol; 1996 Jul; 166(1):32-41. PubMed ID: 8661942 [TBL] [Abstract][Full Text] [Related]
9. Control of the association state of tetrameric glucose-fructose oxidoreductase from Zymomonas mobilis as the rationale for stabilization of the enzyme in biochemical reactors. Fürlinger M; Satory M; Haltrich D; Kulbe KD; Nidetzky B J Biochem; 1998 Aug; 124(2):280-6. PubMed ID: 9685715 [TBL] [Abstract][Full Text] [Related]
10. Crystal structure of NADP(H)-dependent 1,5-anhydro-D-fructose reductase from Sinorhizobium morelense at 2.2 A resolution: construction of a NADH-accepting mutant and its application in rare sugar synthesis. Dambe TR; Kühn AM; Brossette T; Giffhorn F; Scheidig AJ Biochemistry; 2006 Aug; 45(33):10030-42. PubMed ID: 16906761 [TBL] [Abstract][Full Text] [Related]
11. High resolution crystal structure of pyruvate decarboxylase from Zymomonas mobilis. Implications for substrate activation in pyruvate decarboxylases. Dobritzsch D; König S; Schneider G; Lu G J Biol Chem; 1998 Aug; 273(32):20196-204. PubMed ID: 9685367 [TBL] [Abstract][Full Text] [Related]
12. The three-dimensional structure of glucose 6-phosphate dehydrogenase from Leuconostoc mesenteroides refined at 2.0 A resolution. Rowland P; Basak AK; Gover S; Levy HR; Adams MJ Structure; 1994 Nov; 2(11):1073-87. PubMed ID: 7881907 [TBL] [Abstract][Full Text] [Related]
13. A multistep process is responsible for product-induced inactivation of glucose-fructose oxidoreductase from Zymomonas mobilis. Fürlinger M; Haltrich D; Kulbe KD; Nidetzky B Eur J Biochem; 1998 Feb; 251(3):955-63. PubMed ID: 9490072 [TBL] [Abstract][Full Text] [Related]
14. The efficient export of NADP-containing glucose-fructose oxidoreductase to the periplasm of Zymomonas mobilis depends both on an intact twin-arginine motif in the signal peptide and on the generation of a structural export signal induced by cofactor binding. Halbig D; Wiegert T; Blaudeck N; Freudl R; Sprenger GA Eur J Biochem; 1999 Jul; 263(2):543-51. PubMed ID: 10406965 [TBL] [Abstract][Full Text] [Related]
15. Crystallization and preliminary X-ray analysis of glucose-fructose oxidoreductase from Zymomonas mobilis. Loos H; Ermler U; Sprenger GA; Sahm H Protein Sci; 1994 Dec; 3(12):2447-9. PubMed ID: 7756998 [TBL] [Abstract][Full Text] [Related]
16. Structures of dimeric dihydrodiol dehydrogenase apoenzyme and inhibitor complex: probing the subunit interface with site-directed mutagenesis. Carbone V; Endo S; Sumii R; Chung RP; Matsunaga T; Hara A; El-Kabbani O Proteins; 2008 Jan; 70(1):176-87. PubMed ID: 17654552 [TBL] [Abstract][Full Text] [Related]
17. Human glucose-6-phosphate dehydrogenase: the crystal structure reveals a structural NADP(+) molecule and provides insights into enzyme deficiency. Au SW; Gover S; Lam VM; Adams MJ Structure; 2000 Mar; 8(3):293-303. PubMed ID: 10745013 [TBL] [Abstract][Full Text] [Related]
18. Biotransformation of pineapple juice sugars into dietetic derivatives by using a cell free oxidoreductase from Zymomonas mobilis together with commercial invertase. Aziz MG; Michlmayr H; Kulbe KD; Del Hierro AM Enzyme Microb Technol; 2011 Jan; 48(1):85-91. PubMed ID: 22112775 [TBL] [Abstract][Full Text] [Related]
19. Sorbitol promotes growth of Zymomonas mobilis in environments with high concentrations of sugar: evidence for a physiological function of glucose-fructose oxidoreductase in osmoprotection. Loos H; Krämer R; Sahm H; Sprenger GA J Bacteriol; 1994 Dec; 176(24):7688-93. PubMed ID: 8002594 [TBL] [Abstract][Full Text] [Related]
20. Reduction of xylose to xylitol catalyzed by glucose-fructose oxidoreductase from Zymomonas mobilis. Zhang X; Chen G; Liu W FEMS Microbiol Lett; 2009 Apr; 293(2):214-9. PubMed ID: 19239494 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]