These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 8995200)

  • 21. Isolation, characterization, and distribution of a novel neuropeptide, Rana RFamide (R-RFa), in the brain of the European green frog Rana esculenta.
    Chartrel N; Dujardin C; Leprince J; Desrues L; Tonon MC; Cellier E; Cosette P; Jouenne T; Simonnet G; Vaudry H
    J Comp Neurol; 2002 Jun; 448(2):111-27. PubMed ID: 12012424
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Brainstem afferents to the magnocellular basal forebrain studied by axonal transport, immunohistochemistry, and electrophysiology in the rat.
    Semba K; Reiner PB; McGeer EG; Fibiger HC
    J Comp Neurol; 1988 Jan; 267(3):433-53. PubMed ID: 2449477
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Substance P-related peptides in the hypothalamus of amphibia.
    Gaudino G; Fasolo A
    Cell Tissue Res; 1980; 211(2):241-50. PubMed ID: 6158373
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparative analysis of dopamine and tyrosine hydroxylase immunoreactivities in the brain of two amphibians, the anuran Rana ridibunda and the urodele Pleurodeles waltlii.
    Gonzalez A; Smeets WJ
    J Comp Neurol; 1991 Jan; 303(3):457-77. PubMed ID: 1672535
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Suprachiasmatic efferents avoid phenestrated capillaries but innervate neuroendocrine cells, including those producing dopamine.
    Horvath TL
    Endocrinology; 1997 Mar; 138(3):1312-20. PubMed ID: 9048641
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison of melatonin-binding sites in the brain of two amphibians: an autoradiographic study.
    Tavolaro R; Canonaco M; Franzoni MF
    Cell Tissue Res; 1995 Mar; 279(3):613-7. PubMed ID: 7736557
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Distribution of galanin-like immunoreactivity in the brain of Rana esculenta and Xenopus laevis.
    Lázár GY; Liposits ZS; Tóth P; Trasti SL; Maderdrut JL; Merchenthaler I
    J Comp Neurol; 1991 Aug; 310(1):45-67. PubMed ID: 1719037
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Neuronal connections through the posterior commissure in the frog Rana esculenta.
    Lázár G; Pál E
    J Hirnforsch; 1999; 39(3):369-74. PubMed ID: 10536869
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Indirect projections from the suprachiasmatic nucleus to major arousal-promoting cell groups in rat: implications for the circadian control of behavioural state.
    Deurveilher S; Semba K
    Neuroscience; 2005; 130(1):165-83. PubMed ID: 15561433
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The connections of the anterior pallium in Pleurodeles waltl and Triturus carnifex: an HRP study.
    Sassoè Pognetto M; Pairault C; Clairambault P; Fasolo A
    J Hirnforsch; 1991; 32(3):397-407. PubMed ID: 1723420
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The posterior hypothalamic area: chemoarchitecture and afferent connections.
    Abrahamson EE; Moore RY
    Brain Res; 2001 Jan; 889(1-2):1-22. PubMed ID: 11166682
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Neuropeptide Y system of the female monkey hypothalamus: retrograde tracing and immunostaining.
    Thind KK; Boggan JE; Goldsmith PC
    Neuroendocrinology; 1993; 57(2):289-98. PubMed ID: 7685504
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Striatal afferents in the newt Triturus cristatus.
    Dubé L; Clairambault P; Malacarne G
    Brain Behav Evol; 1990; 35(4):212-26. PubMed ID: 1974164
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Comparative structure of diencephalic neuronal groups in Rana ridibunda and Triturus boscai].
    Fernández González CM
    Trab Inst Cajal; 1979; 70(4):321-48. PubMed ID: 263706
    [No Abstract]   [Full Text] [Related]  

  • 35. Origins of spinal cholinergic pathways in amphibians demonstrated by retrograde transport and choline acetyltransferase immunohistochemistry.
    López JM; Morona R; Moreno N; Domínguez L; González A
    Neurosci Lett; 2007 Sep; 425(2):73-7. PubMed ID: 17822845
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Distribution and hypothalamic projection of tyrosine-hydroxylase containing neurons of the nucleus of the solitary tract in the pigeon.
    Berk ML
    J Comp Neurol; 1991 Oct; 312(3):391-403. PubMed ID: 1684186
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Distribution of tyrosine hydroxylase and neuropeptide Y-like immunoreactive neurons in rabbit medulla oblongata, with attention to colocalization studies, presumptive adrenaline-synthesizing perikarya, and vagal preganglionic cells.
    Blessing WW; Howe PR; Joh TH; Oliver JR; Willoughby JO
    J Comp Neurol; 1986 Jun; 248(2):285-300. PubMed ID: 2424947
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Histological, immuno- and enzyme-histochemical investigations on the adenohypophysis of the urodeles, Mertensiella caucasica and Triturus cristatus and the caecilian, Chthonerpeton indistinctum.
    Schubert C; Welsch U; Goos H
    Cell Tissue Res; 1977 Dec; 185(3):339-49. PubMed ID: 340044
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Immuno-enzyme cytochemical demonstration of mesotocinergic nerve fibres in the pars intermedia of the amphibian hypophysis.
    Dierickx K; Vandesande F
    Cell Tissue Res; 1976 Oct; 174(1):25-33. PubMed ID: 825229
    [TBL] [Abstract][Full Text] [Related]  

  • 40. New insights on the neuropeptide Y system in the larval lamprey brain: neuropeptide Y immunoreactive neurons, descending spinal projections and comparison with tyrosine hydroxylase and GABA immunoreactivities.
    Barreiro-Iglesias A; Anadón R; Rodicio MC
    Neuroscience; 2010 May; 167(2):396-413. PubMed ID: 20167263
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.