These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 8995237)
1. Electrogenic L-histidine transport in neutral and basic amino acid transporter (NBAT)-expressing Xenopus laevis oocytes. Evidence for two functionally distinct transport mechanisms induced by NBAT expression. Ahmed A; Yao PC; Brant AM; Peter GJ; Harper AA J Biol Chem; 1997 Jan; 272(1):125-30. PubMed ID: 8995237 [TBL] [Abstract][Full Text] [Related]
2. Sodium-independent currents of opposite polarity evoked by neutral and cationic amino acids in neutral and basic amino acid transporter cRNA-injected oocytes. Ahmed A; Peter GJ; Taylor PM; Harper AA; Rennie MJ J Biol Chem; 1995 Apr; 270(15):8482-6. PubMed ID: 7721744 [TBL] [Abstract][Full Text] [Related]
3. Effects of truncation of the COOH-terminal region of a Na+-independent neutral and basic amino acid transporter on amino acid transport in Xenopus oocytes. Miyamoto K; Segawa H; Tatsumi S; Katai K; Yamamoto H; Taketani Y; Haga H; Morita K; Takeda E J Biol Chem; 1996 Jul; 271(28):16758-63. PubMed ID: 8663184 [TBL] [Abstract][Full Text] [Related]
4. Interactions between the thiol-group reagent N-ethylmaleimide and neutral and basic amino acid transporter-related amino acid transport. Peter GJ; Davies A; Watt PW; Birrell J; Taylor PM Biochem J; 1999 Oct; 343 Pt 1(Pt 1):169-76. PubMed ID: 10493926 [TBL] [Abstract][Full Text] [Related]
5. Opposite directed currents induced by the transport of dibasic and neutral amino acids in Xenopus oocytes expressing the protein rBAT. Busch AE; Herzer T; Waldegger S; Schmidt F; Palacin M; Biber J; Markovich D; Murer H; Lang F J Biol Chem; 1994 Oct; 269(41):25581-6. PubMed ID: 7929260 [TBL] [Abstract][Full Text] [Related]
6. Multiple components of arginine and phenylalanine transport induced in neutral and basic amino acid transporter-cRNA-injected Xenopus oocytes. Peter GJ; Davidson IG; Ahmed A; McIlroy L; Forrester AR; Taylor PM Biochem J; 1996 Sep; 318 ( Pt 3)(Pt 3):915-22. PubMed ID: 8836138 [TBL] [Abstract][Full Text] [Related]
7. Cloning, functional expression and dietary regulation of the mouse neutral and basic amino acid transporter (NBAT). Segawa H; Miyamoto K; Ogura Y; Haga H; Morita K; Katai K; Tatsumi S; Nii T; Taketani Y; Takeda E Biochem J; 1997 Dec; 328 ( Pt 2)(Pt 2):657-64. PubMed ID: 9371728 [TBL] [Abstract][Full Text] [Related]
8. Molecular characteristics of mammalian and insect amino acid transporters: implications for amino acid homeostasis. Castagna M; Shayakul C; Trotti D; Sacchi VF; Harvey WR; Hediger MA J Exp Biol; 1997 Jan; 200(Pt 2):269-86. PubMed ID: 9050235 [TBL] [Abstract][Full Text] [Related]
9. Stimulation of system y(+)-like amino acid transport by the heavy chain of human 4F2 surface antigen in Xenopus laevis oocytes. Bertran J; Magagnin S; Werner A; Markovich D; Biber J; Testar X; Zorzano A; Kühn LC; Palacin M; Murer H Proc Natl Acad Sci U S A; 1992 Jun; 89(12):5606-10. PubMed ID: 1376926 [TBL] [Abstract][Full Text] [Related]
10. Expression of Na(+)-independent amino acid transport in Xenopus laevis oocytes by injection of rabbit kidney cortex mRNA. Bertran J; Werner A; Stange G; Markovich D; Biber J; Testar X; Zorzano A; Palacin M; Murer H Biochem J; 1992 Feb; 281 ( Pt 3)(Pt 3):717-23. PubMed ID: 1536650 [TBL] [Abstract][Full Text] [Related]
11. Progressive C-terminal deletions of the renal cystine transporter, NBAT, reveal a novel bimodal pattern of functional expression. Deora AB; Ghosh RN; Tate SS J Biol Chem; 1998 Dec; 273(49):32980-7. PubMed ID: 9830050 [TBL] [Abstract][Full Text] [Related]
12. Primary structure, genomic organization, and functional and electrogenic characteristics of human system N 1, a Na+- and H+-coupled glutamine transporter. Fei YJ; Sugawara M; Nakanishi T; Huang W; Wang H; Prasad PD; Leibach FH; Ganapathy V J Biol Chem; 2000 Aug; 275(31):23707-17. PubMed ID: 10823827 [TBL] [Abstract][Full Text] [Related]
13. Involvement of rBAT in Na(+)-dependent and -independent transport of the neurotransmitter candidate L-DOPA in Xenopus laevis oocytes injected with rabbit small intestinal epithelium poly A(+) RNA. Ishiia H; Sasaki Y; Goshima Y; Kanai Y; Endou H; Ayusawa D; Ono H; Miyamae T; Misu Y Biochim Biophys Acta; 2000 Jun; 1466(1-2):61-70. PubMed ID: 10825431 [TBL] [Abstract][Full Text] [Related]
14. Oligomeric structure of a renal cystine transporter: implications in cystinuria. Wang Y; Tate SS FEBS Lett; 1995 Jul; 368(2):389-92. PubMed ID: 7628645 [TBL] [Abstract][Full Text] [Related]
15. The amino acid transport system y+L induced in Xenopus laevis oocytes by human choriocarcinoma cell (JAR) mRNA is functionally related to the heavy chain of the 4F2 cell surface antigen. Fei YJ; Prasad PD; Leibach FH; Ganapathy V Biochemistry; 1995 Jul; 34(27):8744-51. PubMed ID: 7612614 [TBL] [Abstract][Full Text] [Related]
16. Voltage dependence of L-arginine transport by hCAT-2A and hCAT-2B expressed in oocytes from Xenopus laevis. Nawrath H; Wegener JW; Rupp J; Habermeier A; Closs EI Am J Physiol Cell Physiol; 2000 Nov; 279(5):C1336-44. PubMed ID: 11029280 [TBL] [Abstract][Full Text] [Related]
17. Cysteine residues in the C-terminus of the neutral- and basic-amino-acid transporter heavy-chain subunit contribute to functional properties of the system b(0,+)-type amino acid transporter. Peter GJ; Panova TB; Christie GR; Taylor PM Biochem J; 2000 Nov; 351 Pt 3(Pt 3):677-82. PubMed ID: 11042122 [TBL] [Abstract][Full Text] [Related]
18. Membrane topology of the rat kidney neutral and basic amino acid transporter. Mosckovitz R; Udenfriend S; Felix A; Heimer E; Tate SS FASEB J; 1994 Oct; 8(13):1069-74. PubMed ID: 7926373 [TBL] [Abstract][Full Text] [Related]
19. Characterization of neutral and cationic amino acid transport in Xenopus oocytes. Campa MJ; Kilberg MS J Cell Physiol; 1989 Dec; 141(3):645-52. PubMed ID: 2592432 [TBL] [Abstract][Full Text] [Related]
20. Transport properties of a system y+L neutral and basic amino acid transporter. Insights into the mechanisms of substrate recognition. Kanai Y; Fukasawa Y; Cha SH; Segawa H; Chairoungdua A; Kim DK; Matsuo H; Kim JY; Miyamoto K; Takeda E; Endou H J Biol Chem; 2000 Jul; 275(27):20787-93. PubMed ID: 10777485 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]