BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 8995292)

  • 1. Spectral demonstration of semihemoglobin formation during CN-hemin incorporation into human apohemoglobins.
    Vasudevan G; McDonald MJ
    J Biol Chem; 1997 Jan; 272(1):517-24. PubMed ID: 8995292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Esterification of the propionate groups promotes alpha/beta hemoglobin chain homogeneity of CN-hemin binding.
    Jennings TM; McDonald MJ
    Biochem Biophys Res Commun; 2002 May; 293(5):1354-7. PubMed ID: 12054662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wavelength-dependent spectral changes accompany CN-hemin binding to human apohemoglobin.
    Vasudevan G; McDonald MJ
    J Protein Chem; 2000 Oct; 19(7):583-90. PubMed ID: 11233172
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics of the reconstitution of hemoglobin from semihemoglobins alpha and beta with heme.
    Kawamura-Konishi Y; Chiba K; Kihara H; Suzuki H
    Eur Biophys J; 1992; 21(2):85-92. PubMed ID: 1396406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature dependent soret spectral band shifts accompany human CN-mesohemoglobin assembly.
    Fonseka PV; Vasudevan G; Clarizia LJ; McDonald MJ
    Protein J; 2007 Jun; 26(4):257-63. PubMed ID: 17191128
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spin label studies on conformational changes of aphohemoglobin due to heme binding.
    Lau P; Asakura T
    J Biol Chem; 1976 Nov; 251(21):6838-43. PubMed ID: 185221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantification of Active Apohemoglobin Heme-Binding Sites via Dicyanohemin Incorporation.
    Pires IS; Belcher DA; Palmer AF
    Biochemistry; 2017 Oct; 56(40):5245-5259. PubMed ID: 28846391
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics of human apohemoglobin dimer dissociation.
    Moulton DP; McDonald MJ
    Biochem Biophys Res Commun; 1994 Mar; 199(3):1278-83. PubMed ID: 8147871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proton NMR investigation of the reconstitution of equine myoglobin with hemin dicyanide. Evidence for late formation of the proximal His93F8-iron bond.
    Yee S; Peyton DH
    FEBS Lett; 1991 Sep; 290(1-2):119-22. PubMed ID: 1915862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics of heme binding to semi-alpha-hemoglobin.
    Park RY; McDonald MJ
    Biochem Biophys Res Commun; 1989 Jul; 162(1):522-7. PubMed ID: 2751669
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Soret spectral and bioinformatic approaches provide evidence for a critical role of the alpha -subunit in assembly of tetrameric hemoglobin.
    Vasudevan G; McDonald MJ
    Protein J; 2006 Jan; 25(1):45-56. PubMed ID: 16721660
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of the global architecture of hemoglobin A2 by heme binding studies and molecular modeling.
    Vasudevan G; McDonald MJ
    J Protein Chem; 1998 May; 17(4):319-27. PubMed ID: 9619585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence studies of human semi-beta-hemoglobin assembly.
    Chiu F; Vasudevan G; Morris A; McDonald MJ
    Biochem Biophys Res Commun; 1998 Jan; 242(2):365-8. PubMed ID: 9446800
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoelectron quantum yields of hemin, hemoglobin, and apohemoglobin. Possible applications to photoelectron microscopy of heme proteins in biological membranes.
    Dam RJ; Kongslie KF; Griffith OH
    Biophys J; 1974 Dec; 14(12):933-9. PubMed ID: 4429771
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assignment of the ferriheme resonances of high- and low-spin forms of the symmetrical hemin-reconstituted nitrophorins 1-4 by 1H and 13C NMR spectroscopy: the dynamics of heme ruffling deformations.
    Shokhireva TK; Shokhirev NV; Berry RE; Zhang H; Walker FA
    J Biol Inorg Chem; 2008 Aug; 13(6):941-59. PubMed ID: 18458965
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of the specific heme orientation in reconstituted hemoglobins.
    Ishimori K; Morishima I
    Biochemistry; 1988 Jun; 27(13):4747-53. PubMed ID: 3167013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The kinetic mechanism of heme binding to human apohemoglobin.
    Rose MY; Olson JS
    J Biol Chem; 1983 Apr; 258(7):4298-303. PubMed ID: 6833258
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monitoring the effect of subunit assembly on the structural flexibility of human alpha apohemoglobin by steady-state fluorescence.
    O'Malley SM; McDonald MJ
    J Protein Chem; 1994 Aug; 13(6):561-7. PubMed ID: 7832985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ordered heme binding ensures the assembly of fully functional hemoglobin: a hypothesis.
    Vasudevan G; McDonald MJ
    Curr Protein Pept Sci; 2002 Aug; 3(4):461-6. PubMed ID: 12370008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescence studies of normal and sickle beta apohemoglobin self-association.
    O'Malley SM; McDonald MJ
    J Protein Chem; 1994 Oct; 13(7):585-90. PubMed ID: 7702740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.