These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 8995408)

  • 1. Activation of transducin by a Xenopus short wavelength visual pigment.
    Starace DM; Knox BE
    J Biol Chem; 1997 Jan; 272(2):1095-100. PubMed ID: 8995408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transducin activation by the bovine opsin apoprotein.
    Surya A; Foster KW; Knox BE
    J Biol Chem; 1995 Mar; 270(10):5024-31. PubMed ID: 7890610
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid release of retinal from a cone visual pigment following photoactivation.
    Chen MH; Kuemmel C; Birge RR; Knox BE
    Biochemistry; 2012 May; 51(20):4117-25. PubMed ID: 22217337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of opsin apoprotein activity by retinal. Dark activity of rhodopsin formed at low temperature.
    Surya A; Knox BE
    J Biol Chem; 1997 Aug; 272(35):21745-50. PubMed ID: 9268303
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of rhodopsin-transducin interaction: a mutant rhodopsin photoproduct with a protonated Schiff base activates transducin.
    Zvyaga TA; Fahmy K; Sakmar TP
    Biochemistry; 1994 Aug; 33(32):9753-61. PubMed ID: 8068654
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of photoactivation in vertebrate short wavelength visual pigments: protonation of the retinylidene Schiff base and a counterion switch.
    Ramos LS; Chen MH; Knox BE; Birge RR
    Biochemistry; 2007 May; 46(18):5330-40. PubMed ID: 17439245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The photobleaching sequence of a short-wavelength visual pigment.
    Kusnetzow A; Dukkipati A; Babu KR; Singh D; Vought BW; Knox BE; Birge RR
    Biochemistry; 2001 Jul; 40(26):7832-44. PubMed ID: 11425310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low activation and fast inactivation of transducin in carp cones.
    Tachibanaki S; Yonetsu S; Fukaya S; Koshitani Y; Kawamura S
    J Biol Chem; 2012 Nov; 287(49):41186-94. PubMed ID: 23045532
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Opsin/all-trans-retinal complex activates transducin by different mechanisms than photolyzed rhodopsin.
    Jäger S; Palczewski K; Hofmann KP
    Biochemistry; 1996 Mar; 35(9):2901-8. PubMed ID: 8608127
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transducin activation by rhodopsin without a covalent bond to the 11-cis-retinal chromophore.
    Zhukovsky EA; Robinson PR; Oprian DD
    Science; 1991 Feb; 251(4993):558-60. PubMed ID: 1990431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and function in rhodopsin: expression of functional mammalian opsin in Saccharomyces cerevisiae.
    Mollaaghababa R; Davidson FF; Kaiser C; Khorana HG
    Proc Natl Acad Sci U S A; 1996 Oct; 93(21):11482-6. PubMed ID: 8876161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of phototransduction in short-wavelength cone visual pigments via the retinylidene Schiff base counterion.
    Babu KR; Dukkipati A; Birge RR; Knox BE
    Biochemistry; 2001 Nov; 40(46):13760-6. PubMed ID: 11705364
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Opsins with mutations at the site of chromophore attachment constitutively activate transducin but are not phosphorylated by rhodopsin kinase.
    Robinson PR; Buczyłko J; Ohguro H; Palczewski K
    Proc Natl Acad Sci U S A; 1994 Jun; 91(12):5411-5. PubMed ID: 8202499
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of activation and inactivation of opsin: role of Glu113 and Lys296.
    Cohen GB; Oprian DD; Robinson PR
    Biochemistry; 1992 Dec; 31(50):12592-601. PubMed ID: 1472495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chimeric nature of pinopsin between rod and cone visual pigments.
    Nakamura A; Kojima D; Imai H; Terakita A; Okano T; Shichida Y; Fukada Y
    Biochemistry; 1999 Nov; 38(45):14738-45. PubMed ID: 10555955
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light-dependent activation of rod transducin by pineal opsin.
    Max M; Surya A; Takahashi JS; Margolskee RF; Knox BE
    J Biol Chem; 1998 Oct; 273(41):26820-6. PubMed ID: 9756926
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diffusible ligand all-trans-retinal activates opsin via a palmitoylation-dependent mechanism.
    Sachs K; Maretzki D; Meyer CK; Hofmann KP
    J Biol Chem; 2000 Mar; 275(9):6189-94. PubMed ID: 10692411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of the efficiency of G protein activation by ligand-free and light-activated forms of rhodopsin.
    Melia TJ; Cowan CW; Angleson JK; Wensel TG
    Biophys J; 1997 Dec; 73(6):3182-91. PubMed ID: 9414230
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dephosphorylation during bleach and regeneration of visual pigment in carp rod and cone membranes.
    Yamaoka H; Tachibanaki S; Kawamura S
    J Biol Chem; 2015 Oct; 290(40):24381-90. PubMed ID: 26286749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of rhodopsin mutants that bind transducin but fail to induce GTP nucleotide uptake. Classification of mutant pigments by fluorescence, nucleotide release, and flash-induced light-scattering assays.
    Ernst OP; Hofmann KP; Sakmar TP
    J Biol Chem; 1995 May; 270(18):10580-6. PubMed ID: 7737995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.