BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 8995436)

  • 21. AP lyases and dRPases: commonality of mechanism.
    Piersen CE; McCullough AK; Lloyd RS
    Mutat Res; 2000 Feb; 459(1):43-53. PubMed ID: 10677682
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The recognition of DNA containing an AP site by E.coli endonuclease VI (exonuclease III).
    Shida T; Noda M; Sekiguchi J
    Nucleic Acids Symp Ser; 1995; (34):87-8. PubMed ID: 8841565
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Escherichia coli MutY protein has both N-glycosylase and apurinic/apyrimidinic endonuclease activities on A.C and A.G mispairs.
    Tsai-Wu JJ; Liu HF; Lu AL
    Proc Natl Acad Sci U S A; 1992 Sep; 89(18):8779-83. PubMed ID: 1382298
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Human thymine DNA glycosylase binds to apurinic sites in DNA but is displaced by human apurinic endonuclease 1.
    Waters TR; Gallinari P; Jiricny J; Swann PF
    J Biol Chem; 1999 Jan; 274(1):67-74. PubMed ID: 9867812
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Elements in abasic site recognition by the major human and Escherichia coli apurinic/apyrimidinic endonucleases.
    Erzberger JP; Barsky D; Schärer OD; Colvin ME; Wilson DM
    Nucleic Acids Res; 1998 Jun; 26(11):2771-8. PubMed ID: 9592167
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanism of DNA cleavage and substrate recognition by a bovine apurinic endonuclease.
    Sanderson BJ; Chang CN; Grollman AP; Henner WD
    Biochemistry; 1989 May; 28(9):3894-901. PubMed ID: 2473777
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Asparagine 212 is essential for abasic site recognition by the human DNA repair endonuclease HAP1.
    Rothwell DG; Hickson ID
    Nucleic Acids Res; 1996 Nov; 24(21):4217-21. PubMed ID: 8932375
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The multiple activities of Escherichia coli endonuclease IV and the extreme lability of 5'-terminal base-free deoxyribose 5-phosphates.
    Bailly V; Verly WG
    Biochem J; 1989 May; 259(3):761-8. PubMed ID: 2471513
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Substrate specificity of Fpg protein. Recognition and cleavage of oxidatively damaged DNA.
    Tchou J; Bodepudi V; Shibutani S; Antoshechkin I; Miller J; Grollman AP; Johnson F
    J Biol Chem; 1994 May; 269(21):15318-24. PubMed ID: 7515054
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Human DNA polymerase beta deoxyribose phosphate lyase. Substrate specificity and catalytic mechanism.
    Prasad R; Beard WA; Strauss PR; Wilson SH
    J Biol Chem; 1998 Jun; 273(24):15263-70. PubMed ID: 9614142
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Processing in vitro of an abasic site reacted with methoxyamine: a new assay for the detection of abasic sites formed in vivo.
    Rosa S; Fortini P; Karran P; Bignami M; Dogliotti E
    Nucleic Acids Res; 1991 Oct; 19(20):5569-74. PubMed ID: 1719478
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of biochemical properties of an apurinic/apyrimidinic endonuclease from Helicobacter pylori.
    Turgimbayeva A; Abeldenov S; Zharkov DO; Ishchenko AA; Ramankulov Y; Saparbaev M; Khassenov B
    PLoS One; 2018; 13(8):e0202232. PubMed ID: 30110394
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of the apurinic endonuclease activity of Drosophila Rrp1.
    Nugent M; Huang SM; Sander M
    Biochemistry; 1993 Oct; 32(42):11445-52. PubMed ID: 7692963
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mammalian abasic site base excision repair. Identification of the reaction sequence and rate-determining steps.
    Srivastava DK; Berg BJ; Prasad R; Molina JT; Beard WA; Tomkinson AE; Wilson SH
    J Biol Chem; 1998 Aug; 273(33):21203-9. PubMed ID: 9694877
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The catalytic mechanism of a pyrimidine dimer-specific glycosylase (pdg)/abasic lyase, Chlorella virus-pdg.
    Garvish JF; Lloyd RS
    J Biol Chem; 1999 Apr; 274(14):9786-94. PubMed ID: 10092668
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Embryonic extracts derived from the nematode Caenorhabditis elegans remove uracil from DNA by the sequential action of uracil-DNA glycosylase and AP (apurinic/apyrimidinic) endonuclease.
    Shatilla A; Ramotar D
    Biochem J; 2002 Jul; 365(Pt 2):547-53. PubMed ID: 11966472
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The role of Mg2+ and specific amino acid residues in the catalytic reaction of the major human abasic endonuclease: new insights from EDTA-resistant incision of acyclic abasic site analogs and site-directed mutagenesis.
    Erzberger JP; Wilson DM
    J Mol Biol; 1999 Jul; 290(2):447-57. PubMed ID: 10390343
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chlamydia pneumoniae AP endonuclease IV could cleave AP sites of double- and single-stranded DNA.
    Liu X; Liu J
    Biochim Biophys Acta; 2005 Dec; 1753(2):217-25. PubMed ID: 16257276
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Expression in Escherichia coli of a rat cDNA encoding an apurinic/apyrimidinic endonuclease.
    Huq I; Wilson TM; Kelley MR; Deutsch WA
    Mutat Res; 1995 Nov; 337(3):191-9. PubMed ID: 7491122
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Alpha-deoxyadenosine, a major anoxic radiolysis product of adenine in DNA, is a substrate for Escherichia coli endonuclease IV.
    Ide H; Tedzuka K; Shimzu H; Kimura Y; Purmal AA; Wallace SS; Kow YW
    Biochemistry; 1994 Jun; 33(25):7842-7. PubMed ID: 7516707
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.